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ABSTRACT 

The effect of ATIS accuracy and extent of ATIS roadway instrumentation on the on-time 

reliability benefits to routine users of ATIS are evaluated through the application of Heuristic 

On-line Web-linked Arrival Time Estimation (HOWLATE) methodology. The HOWLATE 

methodology employs archived estimates of roadway travel times to recreate hypothetical, 

retrospective paired driving trials between travelers with and without ATIS.  Previous research 

using this technique demonstrated that travelers who receive notification of current congestion 

prior to departure can realize substantial time management benefits from improved on-time 

reliability and trip predictability, and that these savings can be converted to a dollar-valued 

benefit.  In this report, we expand the repertoire of applications of HOWLATE to investigate the 

impacts of ATIS accuracy and geographic coverage levels on the value of ATIS service, and how 

to best conduct ATIS evaluations using small data sets. We then examine the implications of 

these findings on the development of cost-effective ATIS deployment strategies. 

Based on 12-month case studies in the cities of Washington DC, Minneapolis/St. Paul, and Los 

Angeles we predict that the net benefit from ATIS use across all potential trips in each network 

is positive only if the error in ATIS reporting is below the range of 10% to 21%. For ATIS 

services with worse accuracy, only certain subsets of the driving populations such as those with 

relatively long or highly variable trips may realize any benefit. Further, we observed that near-

optimal geographical deployments of ATIS can garner as much as 50% to 80% of benefits from 

as little as the first 30% of deployment. Yet, identifying the near-optimal is not as simple as 

ATIS implementation on links with highest variability. In making effective tradeoff decisions 

about how to invest in improved ATIS, be it increasing geographic coverage or increasing 

accuracy, the findings of this report underscore the importance of understanding what levels of 

accuracy are required to generate ATIS user benefit based on regional day-to-day roadway 

variability. 

KEYWORDS:  Intelligent Transportation Systems, benefits, modeling, simulation, HOWLATE, 

Advanced Traveler Information Systems, accuracy, error, deployment, travel time, on-time 

reliability, variability, simulated yoked trials, Washington DC, Minneapolis/St. Paul MN, Twin 

Cities, Los Angeles, Cincinnati.
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EXECUTIVE SUMMARY 

This report examines how on-time reliability benefits to users of Advanced Traveler Information 

Systems (ATIS) vary both by accuracy of the information provided by the ATIS and the 

geographic deployment of the ATIS. The method of analysis applied to conduct this evaluation is 

the Heuristic On-line Web-linked Arrival Time Estimation (HOWLATE ) methodology, wherein 

simulated paired driver trials are conducted based on archives of roadway travel times to identify 

how ATIS use affects the trip outcome.   

The HOWLATE methodology was documented and demonstrated using a small-scale test case 

in Volume I (Wunderlich, 1). In Volume II (Jung, 2), Mitretek applied HOWLATE in a large 

scale evaluation of a prospective pre-trip notification-based ATIS in two cities over a 15-month 

period and found that ATIS can benefit routine users by improving their on-time reliability 

without significantly reducing their in-vehicle travel time. Also in Volume II, Mitretek 

demonstrated how user savings in on-time reliability and in-vehicle travel time can be converted 

to a dollar-valued benefit.  

In this report, Volume III, Mitretek Systems, at the request of the Intelligent Transportation 

Systems (ITS) Joint Program Office (JPO) of the U.S. Department of Transportation (USDOT), 

extends the HOWLATE methodology to investigate the impact of ATIS accuracy and 

geographic coverage levels on the value of ATIS service, and how to best conduct ATIS 

evaluations using small data sets. We then examine the implications of these findings on the 

development of cost-effective ATIS deployment strategies. 

Background 

Initiatives to evaluate the impact of traveler information services providing real-time congestion 

reports (hereafter, simply referred to ATIS in this report) in the 1990’s indicated what appeared 

to be contradictory results with respect to the time savings of ATIS users:  large perceived time 

savings reported by ATIS users in survey-based research, but marginal to no observed in-vehicle 

travel time savings when measured empirically in field operational tests. These quantitative 

findings proved problematic for justifying ATIS investment since public sector cost-benefit 

analysis was focused primarily on in-vehicle travel time savings. 
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In order to reconcile this apparent contradiction between perceived and observed ATIS benefits, 

Mitretek Systems developed the Heuristic On-line Web-Linked Arrival Time Estimation 

(HOWLATE) method, utilizing the concept of a simulated yoked trial.  This technique 

efficiently reconstructs millions of hypothetical, retrospective paired driving trials using archives 

of roadway travel times wherein one driver uses ATIS in making commute decisions while the 

other driver does not deviate from normal departure time and route. Time management benefits 

to ATIS users such as reduction in in-vehicle travel time or arrival offset are quantified using the 

HOWLATE technique, while other more qualitative benefits such as trip serenity associated with 

knowledge of events are not explicitly addressed. 

Using HOWLATE, Mitretek showed that routine users of personalized pre-trip ATIS can realize 

significant benefit in the form of improved trip reliability without a significant reduction in in-

vehicle travel time (Wunderlich, 1; Jung, 2). Moreover, Mitretek demonstrated how these 

savings in trip reliability can translate into substantial monetary savings. It was demonstrated via 

case studies of Washington DC and Minneapolis/St. Paul, Minnesota that given an assumed level 

of accuracy of ATIS, benefits from improved trip reliability to a significant number of 

commuters would far exceed the cost of their subscription to a proposed personalized ATIS that 

provided current travel time on roadways. Thus, public investment in regional ATIS could prove 

cost-beneficial under the levels of ATIS accuracy employed in the study. 

Predicated on the demonstration of potential benefit of ATIS to users and to improving 

transportation systems efficiency, significant ATIS investment has already occurred, particularly 

in the public sector. Within the United States, 26 metropolitan areas provide automated 

telephone services to distribute freeway travel times (Gordon and Trombly,  3). As of 2001, over 

35 metropolitan areas provide freeway travel times or speeds via the internet 

(www.itsdeployment.ed.ornl.gov, 4). More recently, under the federal mandate for a national 

traveler information number (http://www.its.dot.gov/511/PDF/511_overview.pdf , 5), public 

transportation agencies continue their regional ATIS efforts with more significant investments 

planned toward larger, more comprehensive deployments. Yet, to date, little work has been done 

to help guide cost-effective ATIS investments. 
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The maximization of user benefit is fundamentally predicated on engendering a large user base 

that experiences benefit from the service. However, user benefit is highly dependent on the 

accuracy and the level of coverage of ATIS. If the information does not cover significant 

portions of a commuter’s trip or the information is not reliably accurate, then the commuter will 

not use it.  But at what point does an ATIS become accurate enough or provide enough coverage 

to garner a net user benefit? 

In making deployment decisions, planners need to understand these issues and be able to assess 

where their system is now, what investments are likely to result in the largest benefit, and how to 

make these decisions in an environment of limited data.  In this report we apply the HOWLATE 

methodology to assess the sensitivity of user benefits to the accuracy of the ATIS system, and to 

explore how benefit varies across some basic coverage deployment strategies. 

Approach 

As in the field experiments conducted in the 1990s, HOWLATE mimics the conduct of a paired 

driving trial between a simulated ATIS user and a comparable, simulated non-user.  Unlike the 

field trials where subjects departed trip origins simultaneously, the HOWLATE pairing is based 

on trip origin, trip destination and target time arrival at the destination.  Using an extensive 

archive of roadway travel times and a measure of the accuracy of the ATIS, a Monte Carlo 

technique is employed to generate realized roadway travel times. The difference between the 

original archive of ATIS estimated travel times and a realization of actual travel times is a 

function of the level of ATIS accuracy specified in the experiment. 

The decisions of when to start a trip and which route to take are made differently for the ATIS 

user and the non-user.  The ATIS user waits for notification to start a trip from an ATIS service, 

which scans the realization-based travel time archive every five minutes and relays the expected 

travel time on the fastest route under current conditions.  The non-user, conversely, does not 

adjust trip timing or route based on current conditions, but rather relies on past experience to 

establish a habitual time of departure and habitual route.  The yoked study simulator in 

HOWLATE, referencing the travel times on a particular work day in the study period, plays out 

what would have happened in millions of such synthetic paired trials. 
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Simulated travelers are designated as arriving late (1 second or more after the target arrival 

time), early (10 minutes or more earlier than the target arrival time), or just-in-time (not late and 

up to 10 minutes early) in each trial. These thresholds are selected to reflect commute scenarios 

where trip arrival timing is very important –for example workers at factories with stringent 

arrival requirement. Travelers who are not late are considered on-time, regardless of whether 

they are just-in-time or early.  HOWLATE collects statistics on each trial and calculates whether, 

on average, the simulated ATIS user experiences fewer late arrivals and less wasted time by 

arriving too early than the simulated counterpart who does not use ATIS.  A dollar-valued 

benefit of reductions in travel disutility based on the work of Small (Small et al., 6) is calculated 

from the reductions in the frequency and magnitude of early or late arrivals as well as in-vehicle 

travel time. 

For this analysis, case studies are conducted using observed data for the cities of Washington, 

DC, Minneapolis/St. Paul (hereafter, Twin Cities), and Los Angeles to test the hypotheses of the 

project related to ATIS accuracy and coverage level.  The Washington metropolitan area and 

Twin Cities analyses were conducted using a study period from June 2000 to May 2001 with 

data from SmarTraveler.com, a product of SmartRoute Systems corporation. In Los Angeles, the 

analyses were conducted using a study period from January 2002 to July 2002 with data from the 

California Freeway Performance Measurement System (PeMS).  

Measuring ATIS Accuracy Impacts 

In evaluating how ATIS user benefit varies by ATIS information accuracy, we conduct sets of 

simulations wherein the level of error in the ATIS information is varied from 0% (perfect 

information) to 25%. Consequently, the gap between estimated travel times provided by ATIS 

and the realized roadway travel times grows as the level of error is increased. The error 

introduced is that of random error, causing information sometimes to be higher than true 

roadway times and sometimes to be lower than true roadway times, but overall, without any 

recurrent bias in the ATIS information.  We conduct analyses based on zero recurrent bias 

because ATIS providers can relatively effectively correct for recurrent bias, but day-to-day 

randomness is more difficult to address. Moreover, a routine ATIS user would be aware of 
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recurrent bias and would adjust ATIS information to align with trip experience, thereby 

mitigating the effect of recurrent reporting bias. 

Measuring ATIS Geographic Coverage Impacts 

In a variant to the HOWLATE process developed to modeled partial deployments of traffic 

monitoring systems, the ATIS provider uses historic data to fill in data gaps that exist because 

real-time coverage is not deployed on particular links. We evaluate an incremental deployment 

strategy where links with highest observed travel time variability are deployed first. This 

strategy, called the travel time variability ranked strategy, represents an analytical process by 

which regional planners might design deployment, wherein the roads with highest travel time 

variability are instrumented for ATIS first. The effectiveness of this plausible strategy is then 

compared to two benchmarks. First, the most effective link first strategy is our benchmark for 

near-optimal deployment. This strategy is implemented by an experiment in which each portion 

of the network is instrumented individually and the efficiency of the network is evaluated based 

on that individual instrumentation. The second strategy, randomly ranked deployment represents 

the worst case scenario for regional planners where no information is available in making 

incremental deployment decisions. Links are randomly ranked and traffic monitoring systems for 

ATIS are deployed based on the ranking. 

For each strategy, deployments are evaluated from zero ATIS instrumentation to 100% network 

instrumentation at increments of approximately 10% based on roadway miles. We use the metric 

of ATIS users’ dollar-valued benefit at specific levels of deployment as a percent of benefit 

associated with 100% ATIS deployment. 

Hypotheses and Key Findings 

Hypotheses Regarding ATIS Accuracy:  There exists a unique value level of error, called the 
crossover point of error, below which ATIS provides positive travel reliability benefits on 
aggregate for a region. The crossover point of error is higher for cities with higher day-to-day 
variability, and similarly is higher during peak periods for a city given that day-to-day variability 
is greater during periods of greater congestion. Further, we hypothesize that cities currently 
providing ATIS are at or above their crossover points of error and therefore may not be generate 
positive reliability benefits for potential ATIS users in the region. 
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Findings: Crossover points of error were found to range from 10% to 21% based on city (St. 

Paul/Minneapolis, MN; Washington, DC; and Los Angeles, CA) and time of day. This 

signifies that if a trip is made from each origin to each destination for each 15-minute interval in 

the day, the net benefit from ATIS use for all trips would be positive only if the ATIS reporting 

error is below the range of 10% to 21%, depending on the city and time of day. For ATIS 

services higher than these levels of error, only certain subsets of the driving populations such as 

those with relatively long or highly variable trips may realize benefit.  

The marginal benefit from ATIS accuracy improvements decreases at lower levels of ATIS 

errors.  Figure ES-1 illustrates the relationship of utility from improved trip reliability versus 

travel time error for the Los Angeles region. In Los Angeles, the crossover point of error ranges 

from 14% to 21%. Once regional ATIS reaches a level of error near or below the range of 5%, 

benefits from further improvements to ATIS accuracy may outweigh the costs associated with 

these improvements. The curves for the cities of Washington, DC and St. Paul/Minneapolis have 

the same shape as that of Los Angeles. 
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Figure ES-1 Los Angeles Network Utility Curve by ATIS Error Level 
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Figure ES-2 presents a graph of crossover error point by variability in link speeds, disaggregated 

by city and congestion period. St. Paul/Minneapolis and Washington DC, the cities with lower 

day-to-day speed variability, have a significantly lower crossover points compared to Los 

Angeles, a city with greater speed variability. Thus, ATIS in the cities of Washington DC and St. 

Paul/Minneapolis needs to be more accurate than in Los Angeles to achieve a net positive ATIS 

user benefit. Also, the PM peak period for all cities tends to have greatest speed variability, and 

consequently highest thresholds for ATIS error. 

Note that the relationship between the crossover point of error and system-level travel speed 

variability can be shown to be linear with a R-square value of 0.92 and a slope of 1.55%. This 

suggests that as regional trip variability decreases by 1 minute, the system needs to decrease 

ATIS error by 1.55% to maintain the same level of potential user benefit. 

With respect to the current level of accuracy of actual ATIS implementations, we identified two 

corridor studies for the cities of Washington DC and St. Paul/Minneapolis. In Washington DC 

the error of ATIS excluding recurrent bias in reporting ranged from 9% to 17% for freeways and 

6% to 26% for arterials (Hardy et al., 7). This report identifies the crossover point of error to 

range between 9% and 14% for Washington DC.  In St. Paul/Minneapolis the error of ATIS 

excluding bias ranged from 24% to 33% depending on peak versus off-peak periods (Cambridge 

Systematics, 8; Toppen et al., 9). This report identifies the crossover point of error to range 

between 10% and 15%. These ranges of current accuracy are illustrated in Figure ES-2.  

Based on this single study to measure ATIS accuracy in Washington DC, the ranges of measured 

ATIS error and crossover point overlap, leaving the status of net aggregate impact from ATIS 

use ambiguous. In St. Paul/Minneapolis, the net impact of ATIS would clearly be negative 

(measured error > crossover point) had all trips on the network used ATIS. Still, the Twin Cities 

deployment may be cost-beneficial taken as a whole, given that commuters who do not benefit 

would not have used ATIS, and that for commuters with very long or highly variable trips 

benefits would be significant from ATIS use even at these high levels of error. 
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Crossover Point of Error =  0.0155 x (Avg. Stdev. In Link Speed) + 0.0471

R2 = 0.9234
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Figure ES-2 Crossover Point of Error by Average Link Speed Standard Deviation 
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Hypotheses Regarding Incremental Geographic Deployment:  For near-optimal incremental 
deployment strategies of ATIS, an overwhelming percentage of the benefit associated with full 
deployment can be achieved through efficient deployment of travel time surveillance over a 
relatively limited set of a few key roadway segments. Incremental deployment strategies based 
on the observable roadway condition, link travel time variability, will be relatively closer to near-
optimal efficiency compared to a random deployment strategy. The geometric form of the 
regional roadway network will affect the magnitude of benefit achieved by the first few levels in 
an incremental deployment strategy. More deployment always implies more benefit. 

 

Findings: The most effective link ranked strategy, offered as a benchmark for near-optimal 

incremental deployment, generates deployment plans wherein 30% of network miles deployed 

account for as much as 93%, 80%, and 56% of the full deployment benefit. This is based on the 

trip disutility reductions in the cities of Washington DC, St. Paul/Minneapolis, and Los Angeles, 

respectively. However implementing this strategy would require an experiment in which a single 

link in the network is instrumented  with ATIS while all other links have no ATIS capability. 

This would be repeated for each link in the network along with a measure of the efficiency of the 

network based on that individual link instrumentation. Figure ES-3 presents the percent of total 

benefit garnered by percent of roadway miles covered using the most effective link ranked 

strategy. As demonstrated from the evaluations, ATIS real-time coverage on key facilities in the 

region has the potential to generate the majority of ATIS user benefits associated with full 

deployment.  

Our hypothesis regarding the effectiveness of partial deployment plans based on observed link 

variability was not supported. Deployments based solely on the criterion of link travel time 

variability proved no better and sometimes even less efficient than the randomly ranked link 

deployment strategy, and in all cases far less efficient than the most effective link ranked 

strategy. Incremental deployments based on the randomly ranked strategy were on average 68% 

to 76% as efficient as our near-optimal benchmark across the three cities. In contrast, 

incremental deployments based on the travel time variability ranked strategy were on average 

57% to 75% as efficient as the near-optimal strategy across the three cities. Table ES-1 presents 

the relative efficiency of the travel time variability strategy and the random strategy compared to 

the near-optimal strategy of most effective link first. 
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One reason the travel time variability strategy may have performed poorly can be seen in the 

Washington DC case study. Here arterial links tend to have greater variability compared to 

freeway links. Yet freeways are far more likely to be utilized for network-wide travel. It may be 

that an incremental deployment strategy of first placing instrumentation on freeways with high 

variability may return patterns more similar to the near-optimal benchmark. 
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Figure ES-3 Benefit of Incremental Deployments based on Near-Optimal Deployment Strategy 

 

Table ES-1 Relative Efficiency of Deployment Strategies Compared to the Benchmark Near-
Optimal Plan 

STRATEGY Washington, DC Twin Cities Los Angeles
Most Effective Link Ranked 

Travel Time Variability Ranked 57.2% 73.7% 74.8%
Average of 10 Randomly Ranked 68.1% 67.7% 75.6%

Best of 10 Randomly Ranked 85.7% 77.7% 87.7%
Worst of 10 Randomly Ranked 42.7% 57.9% 62.9%

 Set to 100% Effectiveness
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In addition, poor performance of the travel time variability strategy compared to a random 

deployment (even in all freeway networks like Los Angeles) may be attributed to the fact that the 

demand pattern weights trips from each origin to each destination equally.  We expect in reality 

that the freeway sections with greatest variability will be those most used, and that weighting 

trips by demand will prove that incremental deployments based on travel-time variability will be 

more efficient than random deployments. We will investigate these and other incremental 

deployment strategies in future work. 

Washington DC, a mixed radial network, has the highest potential for planned, incremental 

deployment, followed by Twin Cities as illustrated in Figure ES-3. Based on the near-optimal 

strategy, deployments beyond the first most effective 70% of the networks in Washington, DC 

and Twin Cities generated no benefit. This is because the accuracy of the ATIS was not high 

enough compared to the variability of links instrumented to make ATIS useful or beneficial. 

In Los Angeles, however, the hypothesis that more deployment means more benefit holds true.  

Implications 

Public sector investment in ATIS is predicated on the expectation of mobility and productivity 

benefits to both users of ATIS and the transportation system. For aggregate user benefits to be 

realized, the ATIS service must perform at or above a specific level of accuracy, or conversely, 

provide information below a certain level of error. Thus, the first step toward efficient ATIS 

investment decision-making for regions with existing ATIS is to evaluate the accuracy of the 

current ATIS system.  

For regions with existing ATIS as well as for regions in the planning stages of ATIS, decision-

makers also need to assess how accurate their ATIS needs to be to generate positive user benefit 

in their region. The crossover point of error, the value below which ATIS yields a net regional 

benefit, ranged from 10% to 21% based on the three cities evaluated in this report. More 

importantly, the crossover point of error proved to have a linear relationship with day-to-day 

roadway variability of the region. Thus, ATIS planners can use measured roadway variability to 

gauge how accurate ATIS in their region needs to be to garner user benefit.  
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Across the three cities we found that once ATIS error is reduced to a 5% level, benefits from 

improvements in accuracy are minimal. Having an understanding of the range within which a 

region’s ATIS level of error is acceptable may have significant implications in identifying the 

types of sensor technologies selected for deployment. For example, in Los Angeles where the 

crossover point of error ranges from 14% to 21%, detectors using certain technologies with an 

error range around 12% may be most cost effective. Those same detectors may not be adequate 

in Washington DC where the crossover point of error ranges from 9% to 14%. The key finding is 

that if the regional variability is relatively low, the accuracy of ATIS required to realize regional 

user benefit must be relatively high. Conversely, if the regional variability is relatively high, 

ATIS accuracy to realize aggregate regional user benefits can be relatively lower. 

An equally important step toward efficient ATIS investment decision-making for regions is 

smarter geographic deployment of ATIS coverage. We observed that near-optimal geographic 

deployments of ATIS can garner as much as 50% to 80% of benefits from as little as the first 

30% of deployment. Yet, identifying the near-optimal is not as straightforward as ATIS 

implementation on links with highest variability. Travel demand is expected to play a significant 

role in the deployment selection process as is facility type (eg. freeway versus arterial).  

In making effective tradeoff decisions about how to invest in improved ATIS —be it increasing 

geographic coverage or increasing accuracy, the findings of this report underscore the 

importance of understanding what levels of accuracy are required to generate ATIS user benefit 

based on regional day-to-day roadway variability.  Figure ES-4 presents a notional nomograph 

based on the findings of this report that illustrates some fundamental concepts in planning cost-

effective investments in ATIS deployments. Decision makers in regions with low travel time 

variability considering investments in ATIS systems with poor accuracy (the “don’t deploy” 

region) should not consider deployment unless they can implement a system with relatively low 

error in reporting of ATIS. That is, the net user benefit from ATIS is likely to be greater than 

zero once their ATIS system is either in the “get better sensors” or “add coverage” regions. 

Conversely, sufficiently accurate ATIS services (the “add coverage” region) should consider 

geographic expansion rather than further refinement of ATIS accuracy. At higher levels of 

coverage or ATIS information error, decision makers again find themselves in the “get bettor 

sensors” region and may need to consider further improvements in ATIS accuracy that may 
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come at the expense of better sensors or information processing technologies. Continued 

investment in ATIS service coverage or accuracy reaches a natural end point in the “stand pat” 

region where both geographic coverage and accuracy of the ATIS service is at a level where the 

marginal benefits from additional improvements do not warrant the cost of such improvements. 
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Figure ES-4 Notional Nomograph of Potential Decision Making Regimes 

 

Across the dozens of existing deployed ATIS services, overwhelmingly, the level of error in the 

information they provide is poorly known. A review of literature on the accuracy of ATIS or 

speed/travel time sensor devices provided limited data on ATIS accuracy.  Based on these 

reviews and the notional nomograph (Figure ES-4) presented earlier in this section, we derive a 

nomograph (Figure ES-5) of the current state of ATIS in the United States and the direction in 

which ATIS decision-makers should move. Our findings from this study suggest that the initial 

focus should be on accuracy, followed by an expansion of geographic deployment. 
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Figure ES-5 Suggested Direction for ATIS Investment 

 

CONCLUSIONS AND NEXT STEPS 

By extending the HOWLATE methodology, we successfully evaluated how ATIS user benefits 

of on-time reliability and travel time vary by ATIS accuracy and deployment coverage. The 

implications for field managers considering ATIS investment strategies, based on the findings 

from case studies in the cities of Los Angeles, Washington DC, and Minneapolis/St. Paul are 

noteworthy. Implications for decision makers in regions with existing ATIS are: 

•  Before considering further ATIS investments, first gain an understanding of the accuracy 

of your current posted travel time information and of the day-to-day variability of travel 

on roadways instrumented with ATIS. 

•  If the accuracy of the existing service is poor in relation to day-to-day travel variability, 

then focus investment into improving accuracy. The variability-accuracy relationship is 

demonstrated in Figure ES-2. 

•  Once system accuracy is relatively good in relation to day-to-day travel time variability, 

then, focus on increasing ATIS geographic coverage (Figure ES-4). 
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•  Keep in mind that more deployment does not always mean more benefit. There exists an 

end-state wherein deployment on roadways may not generate additional benefit to users 

of the ATIS. 

For decision makers in regions considering ATIS: 

•  First identify the day-to-day variability of travel on major regional roadways. 

•  Select technologies and data processing techniques with a level of accuracy that is 

appropriate considering the magnitude of variability in your region. 

•  A good deployment plan can generate significant benefit from minimal investment. 

Identifying such a plan is difficult if only limited data is available. Deployments of ATIS 

based on both travel demand and roadway variability data are likely to be a good start in 

developing an efficient deployment plan. 

Case studies in the three cities identified that for ATIS to generate user benefits of on-time 

reliability, the level of error in information delivered by ATIS needs to meet a minimum range of 

10% to 21%. Further, regions with greater day-to-day roadway variability can generate ATIS 

user benefits at higher levels of error in ATIS information compared to regions with lesser day-

to-day roadway variability.  We also confirmed that near-optimal, incremental ATIS geographic 

deployment plans can garner as much 50% to 80% of benefit associated with full deployment 

with as little as 20% to 30% of the full geographic deployment.  

Based on these findings, we have presented notional nomographs aimed at assisting ATIS 

decision-makers in developing effective investment strategies that provide the highest possible 

value of service to their constituencies. In future work, we expect to expand on these 

nomographs to deliver decision-makers more detailed graphs that identify efficient directions for 

investment based on their specific situation. In expanding the notional nomograph, we also 

expect to expand on the various accessible metrics upon which to base incremental geographic 

deployments of ATIS.  In this report, we evaluated deployments based solely on travel time 

variability. In future work we hope to consider other factors such as annual average daily traffic, 

travel demand, or other metrics readily available to transportation planners. 
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1 INTRODUCTION 

In 1999, at the request of the Intelligent Transportation Systems (ITS) Joint Program Office of 

the United States Department of Transportation (USDOT), researchers at Mitretek Systems 

developed a new technique for the evaluation of user impacts of Advanced Traveler Information 

Systems (ATIS) services based on the analysis of archived roadway travel time data, the 

Heuristic On-line Web-linked Arrival Time Estimation (HOWLATE) methodology.  This 

methodology of simulated paired driver trails was documented and demonstrated using a small-

scale test case in Volume I (Wunderlich, 1).  

Mitretek then applied HOWLATE in a large scale evaluation of a prospective pre-trip 

notification-based ATIS in two cities over a 15-month period.  The evaluation focused on the 

potential of ATIS in reducing trip variability and travel time in the cities of Washington DC and 

St. Paul/Minneapolis, MN. Mitretek also demonstrated how user savings in on-time reliability 

and in-vehicle travel time can be translated to a monetary savings. These efforts are documented 

in Volume II (Jung, 2). Key findings from Volumes I and II are that: 

•  ATIS does benefit travelers who need to be on–time, 

•  ATIS benefits are overwhelmingly from improvements in trip reliability and minimally 

from improvements in in-vehicle travel time, 

•  benefits are highly concentrated both by time of day and by geography of trips, 

•  the magnitude of user benefits rises proportionally with a rise in the region’s level of 

congestion, and 

•  users of ATIS for both unfamiliar and routine trips can benefit from ATIS use. 

In this report, Volume III, we expand the repertoire of applications of the HOWLATE 

methodology to assist ATIS decision-makers in developing effective investment strategies that 

provide the highest possible value of service to their constituencies. As jurisdictions work toward 

cost-effective plans for ATIS deployment many basic questions pertaining to deployment 

strategies have yet to be addressed.  For example, are their existing or planned ATIS accurate 
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enough to be beneficial to users? How accurate does their ATIS need to be to provide user 

benefit? At what point is geographic coverage sufficient for commuters in the region to begin to 

experience noticeable benefits. 

In this report, we explore the implications of ATIS accuracy and geographic coverage levels on 

the value of ATIS service. We also explore how to make the best of limited data sets in 

conducting ATIS evaluations. Specifically, we explore the relationship between improved ATIS 

accuracy and the trip reliability benefit to routine users from a pre-trip ATIS. We also explore 

the relationship between increasing geographic deployment of ATIS and the reliability benefits 

to users for these geographical levels of ATIS deployment. 

This introductory section is intended to provide the reader with the necessary background 

regarding the HOWLATE methodology to be able to read and understand this full report as a 

stand-alone document without the prerequisite of having read Volumes I (Wunderlich, 1) or  II 

(Jung, 2). First, a brief summary of the background and motivation on the history of ATIS 

evaluations and the role of HOWLATE are presented in Section 1.1.  An overview of the 

HOWLATE methodology is presented in Section 1.2.  Section 1.3 outlines the hypotheses of the 

new HOWLATE research covered as a part of this document. Readers familiar with HOWLATE 

may wish to skip forward to Section 1.3. 

Section 2 of this report presents modifications and extensions to the HOWLATE methodology 

developed to address study hypotheses. Sections 3 and 4 present the methodologies and findings 

from the ATIS accuracy and geographic coverage studies, respectively. Findings are based on 

case studies of three cities: Washington, DC; Minneapolis/St. Paul, MN, and Los Angeles, CA. 

Section 5 summarizes the findings of these studies with respect to the hypotheses presented in 

Section 1.3 and outlines the roadmap of future work that builds upon the findings of this 

research. 

1.1 ATIS Evaluation and the Role of HOWLATE 

ATIS users overwhelmingly expressed that their use of ATIS saves commute time and reduces 

commute stress. Independent survey  studies undertaken in Boston, Seattle, Washington DC, and 

other metropolitan areas (Englisher, 10; Jensen, 11; Schintler, 12; Lappin, 13) show that between 
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85% and 95% of respondents in each of these surveys reported high confidence that their use of 

ATIS helped them to save time. Other potential user benefits of ATIS include stress reduction 

and better time management; while transportation systems benefits include quicker accident 

congestion dispersion, increased throughput, and reductions in the potential of secondary 

accidents. 

Later work using simulation models (Bunch, 14; Wunderlich, 15; Carter, 16) showed that 

significant travel time savings accrue to ATIS users under conditions of intense, unexpected 

congestion, but total in-vehicle travel time savings on an annualized basis for ATIS users is often 

not statistically significant. Moreover, field trials from in-vehicle navigation systems such as 

Pathfinder, TravTek, and ADVANCE proved minimal to non-existent in-vehicle travel time 

benefit from ATIS use (JHK and Assoc., 17, Inman, 18, and Schofer, 19). These quantitative 

findings proved problematic for justifying ATIS investment since public sector cost-benefit 

analysis was focused on in-vehicle travel time savings.    

Mitretek showed using HOWLATE that routine users of personalized pre-trip ATIS can realize 

significant benefit in the form of improved trip reliability with a marginal benefit in the form of 

in-vehicle travel time savings (Jung, 2). Moreover, Mitretek demonstrated how these savings in 

trip reliability can translate into monetary savings, and that monetary savings are potentially 

substantial. Volume II demonstrated via case studies of Washington DC and Minneapolis/St. 

Paul, Minnesota that given an assumed level of accuracy of ATIS, benefits from improved trip 

reliability to a significant number of commuters would far exceed the cost of their subscription to 

a proposed personalized ATIS using current travel time data sources. Thus, public funding 

toward regional ATIS can prove cost-beneficial under the levels of ATIS accuracy employed in 

the study. 

Predicated on the demonstration of potential benefit of ATIS to users and to improving 

transportation systems efficiency, significant ATIS investment has already occurred, particularly 

in the public sector. Within the United States, 26 metropolitan areas provide automated 

telephone services to distribute freeway travel times (Gordon and Trombly, 3). As of 2001, over 

35 metropolitan areas provide freeway travel times or speeds via the internet 

(www.itsdeployment.ed.ornl.gov, 4). More recently, under the federal mandate for a national 



 

4 
 

traveler information number (http://www.its.dot.gov/511/PDF/511_overview.pdf , 5), public 

transportation agencies continue their regional ATIS efforts with more significant investments 

planned toward larger, more comprehensive deployments. Estimates of the cost of implementing 

and maintaining a 511 traveler information service range from $60,000 to $600,000 per year, 

only considering the telecommunications costs.(ICDN 2001  

http://www.nawgits.com/icdn/511_wright.html, 20) Yet, to date, little work has been done to 

help guide cost-effective ATIS investments. 

Aiming for greatest user benefits is fundamentally predicated on fostering a sufficiently large 

user base that experiences a benefit from the service. However, user benefit is highly dependent 

on the accuracy and the level of coverage of ATIS. That is, given commuters can easily get 

traffic information, then the accuracy and coverage of the information will dictate whether 

commuters will be able to realize improved travel reliability and predictablility. If the 

information does not cover significant portions of a commuter’s trip, or the information is not 

reliably accurate; then, the commuter will not use it.  But at what point does an ATIS become 

accurate enough or provide enough coverage to garner a net user benefit? 

In making deployment decisions, planners need to understand these issues and be able to assess 

where their system is now, where it needs to be to prove useful, and how to make these decisions 

in an environment of limited data.  In this volume we apply the same fundamental methodology 

of HOWLATE to assess the sensitivity of user benefits to the accuracy of the ATIS system and 

to explore how benefit varies across some basic coverage deployment strategies.  

1.2 Overview of the HOWLATE Methodology 

The HOWLATE methodology brings together the necessary data for the implementation and 

analysis of large-scale simulated yoked studies. The simulated yoked study is an experiment 

wherein the trips of two drivers; having the same origin, destination, desired arrival time and 

normal route; are repeated in simulation across many days. The commute of one driver remains 

fixed while the commute of the other driver varies based on information he receives from an 

ATIS. The objective of both of these commuters is to arrive at their destination on-time.  
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The HOWLATE methodology consists of four modules (Figure 1), the first of which is the travel 

time archiver. The archiver is a software application that monitors ATIS link travel time reports 

via the Internet and stores these reports at five-minute intervals.  The archiver compiles and 

saves a daily profile of link travel time by roadway, by time of day, and date over a period of 

several months. 

A key input required for simulated yoked studies is statistical distributions of error between the 

ATIS link travel time reports and observed travel times.  The distributions of error, combined 

with the ATIS travel time report profiles collected by the travel time archiver, facilitate the 

construction of multiple “actual day” profiles through independent Monte Carlo trials. Since we 

cannot know precisely what the actual travel times were on the roadway links, we randomly 

sample from a set of likely values. Each random sample is analyzed as if it were the actual travel 

times, and is called a realization of the Monte Carlo trial. Multiple realizations are constructed 

from each day in the travel time archive and passed to the yoked study simulator. 

In order to conduct a simulated yoked study trial, habitual time of trip start and route choice must 

be determined for the non-ATIS traveler.  To facilitate the identification of habitual time of trip 

start and route choice, the ATIS travel time archive is separated into two periods:  training and 

evaluation.  The training period represents the time period in which non-ATIS drivers settle into 

habitual travel choices that meet a target on-time reliability threshold.  This is modeled in the 

travel habituation module (Figure 1) by obtaining a single realization (“actual day profile”) for 

each of the days in the training period data. Average link travel times at five-minute intervals are 

obtained across all days in the training period using the actual day profiles. Fastest time-variant 

paths and associated path travel times are then identified using the technique of (Kaufman, 21) 

with respect to each origin-destination-target time of arrival.  These fastest paths with respect to 

average travel times are selected as the habitual route for ATIS non-users.  Using average travel 

times to determine habitual route choice is straightforward and computationally efficient.  We do 

not know, however, how realistically this assumption mirrors this aspect of traveler behavior.  

More complex habituation modeling can be incorporated as a component of HOWLATE when 

additional empirical data become available. 
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Figure 1-1 Overview of HOWLATE Methodology 

We estimate travel time variability for each habitual path by computing the variability of its 

travel time over the days in the training period.  To determine the time of habitual trip start we 

first subtract the average habitual path time from the target arrival time. We then subtract an 

additional time buffer proportional to the amount of travel time variability and level of on-time 

arrival confidence.  The buffer size is computed under the assumption that day-to-day variation 

in travel times in the training period is normally distributed.  Travelers who are very concerned 

about being late choose larger time buffers to produce a higher probability of being on-time. 

Thus, a traveler with a 95% on-time reliability requirement has a larger time buffer for variability 

than traveler with an 80% on-time reliability requirement. 
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After habitual routes and trip start timings are determined in the travel habituation module, one 

realization of travel congestion in each day of the evaluation period is generated.  Details of the 

experimental (ATIS) and control (non-ATIS) travel behavior policies are set for all origin-

destination-target time of arrival combinations in the network.  Details include the on-time 

requirement for the ATIS non-user, as well as the desired flexibility of the ATIS user to adjust 

trip starts in real time.  ATIS user preference to remain on the habitual route is modeled using a 

travel time threshold.  The ATIS service does not contact the user about diversion from the 

habitual path unless a faster alternative path is predicted to result in greater time savings than the 

threshold value. 

In addition, ATIS users discounts or inflates the estimates of travel time provided by the ATIS 

service based on the observed accuracy of those reports in the training period.  For example, if 

reports during the early morning periods frequently underestimated the experienced travel time 

of the commuter during the training period, that user would likely begin to adopt the position of 

“when they say it’s going to be 45 minutes, I know that it’s really going to be 60 minutes.”  For 

each origin-destination and time of arrival, an ATIS adjustment factor is computed based on 

experience in the training period. 

Simulated yoked trials are conducted using a single Monte Carlo realization for each day in the 

evaluation period.  The ATIS non-user departs from the origin at the habitual trip start time and 

traverses the network on the habitual path (no diversion).  The ATIS service identifies a 

suggested trip start time by checking the travel time on the current fastest path.  The first check is 

initiated at a set time (e.g., 30 minutes) prior to the habitual start time.  The service postpones 

notifying the user about a trip start by five minutes if taking the current fastest path is projected 

to provide an arrival at the destination earlier than a set arrival window (e.g. 10 minutes) 

compared to the scheduled arrival time.  When a trip can no longer be postponed, the service 

alerts the user of the projected trip start time and the fastest path (subject to the habitual route 

preference threshold). HOWLATE assumes that the ATIS user adopts the suggested trip start 

time and traverses the network on the suggested path.  Note that the service may also contact the 

traveler to suggest trip start timing later than the habitual start time if congestion conditions are 

lighter than normal during that particular day.  An en route guidance supplement to the basic pre-

trip service can also be modeled. 
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In-vehicle travel time, arrival time, and other metrics are computed for both the ATIS user and 

the ATIS non-user by traversing the roadway network using the time-variant travel times 

associated with the actual day realizations. For comparison, an optimal travel time duration and 

trip start timing (corresponding to a perfectly timed arrival at the destination) is also determined 

in a separate calculation by applying the method of (Kaufman, 21). by fixing the time of trip end 

at the destination at the target arrival time and working backward in time until the origin is 

reached. A record for each yoked trial is generated and these records are assembled into daily 

profiles, one for each day in the evaluation period. 

These records of each simulated yoked trial are then analyzed in the output post-processor 

module. (Figure 1-1)  The post-processor accumulates performance measures such as on-time 

reliability and in-vehicle travel time for ATIS users and ATIS non-users.  These performance 

measures can be separated out by records from peak or off-peak periods, or by trip features such 

as trip length. A full description of the set of performance measures developed is presented in 

Section 2.3 

Additional realizations of traffic conditions in the evaluation can be analyzed by generating a 

new set of “actual” conditions through random trial.  Note that because of the randomness 

inherent in the Monte Carlo technique, a traveler may be on-time in one realization and late in 

another, even though they are both representations of what might have happened on a particular 

day in the evaluation period. 

1.3 Study Hypotheses 

The first set of hypotheses for this study is that there exists a unique value level of error at which 

ATIS information becomes useful, called the “crossover” point of error, and that this crossover 

point will be higher for cities with greater day-to-day travel time variability than for cities with 

relatively stable travel times from day-to-day. Moreover, the crossover point of error will be 

higher during peak periods as compared to the off-peak periods of travel. This set of hypotheses 

is based on the expectation that with greater trip variability from day-to-day, the lesser the 

accuracy of the ATIS information needs to be to maintain a given level of user benefit. We also 

hypothesize that many ATIS systems are likely to be above their crossover point of error and will 
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test this hypothesis based on limited accuracy data from two cities: Minneapolis/St. Paul, and 

Washington DC. 

A second set of hypotheses pertains to the geographic coverage of ATIS. We hypothesize that 

there exists near-optimal plans for incremental ATIS deployment wherein the lion’s share of the 

total potential user benefit associated with full deployment can be achieved by an efficient partial 

deployment at a 20% or 30% level. Identifying a near-optimal plan, however, is expected to be a 

difficult task based on the set of data accessible to transportation planners considering ATIS 

deployment. We also hypothesize that incremental deployments based on strategies likely to be 

used by planners will not be pareto optimal, but will be relatively efficient. We will test this 

hypothesis through the simulation of an incremental deployment based on observed link travel 

time variability. Finally, we hypothesize that beyond some level, the marginal benefit of 

increasing coverage may be minimal. These hypotheses associated with incremental ATIS 

deployment are explored in Section 4 of this report. 

To test these two sets of hypotheses, certain aspects of the HOWLATE methodology had to be 

altered.  For example, the ability to model and evaluate partial ATIS network deployments had to 

be designed and implemented.  Section 2 presents revisions and extensions made to the 

HOWLATE process from the algorithm initially implemented in Jung et al, (2).  In addition 

Section 2 provides an overview of the parameters varied or held constant throughout the tests 

and the measures of effectiveness used to determine benefit.  Special attention is paid to the 

process by which various measures are addressed in the computation of dollar-valued disutility 

(Small, et al., 6). 
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2 EXTENSIONS AND REVISIONS TO THE HOWLATE METHODOLOGY 

In order to test the hypotheses posed in Section 1.3 and to incorporate more realistic travel 

behaviors for ATIS users, the HOWLATE methodology required two modifications and an 

enhancement.  This section provides detail on those enhancements as well as key parameter 

settings held in common or varied across experiments presented in Sections 3 and 4. 

2.1 Variable ATIS User Target Arrival Window 

In modeling the ATIS notification service, once the sum of the current clock time and the ATIS 

calculated current trip time generates an expected trip completion within a target arrival window, 

the ATIS service notifies the user to depart. The ATIS target arrival window does not vary by 

trip duration or trip variability in the previous HOWLATE method. The target arrival window in 

Wunderlich and Jung (1, 2)  was set at 10 minutes to be in sync with a key performance measure, 

the just-in-time arrival reliability. The just-in-time reliability measures the frequency of being 

neither very early (10 or more minutes early) or late.   

Based on this regime of a constant target arrival window, very short trips tend to routinely arrive 

a few minutes early. For example, assume a trip with scheduled arrival at 8:00am required 5 

minutes for travel, and the habitual departure time is 7:55am—indicating that the travel time 

does not change from day to day. The ATIS scans departures and suggests the ATIS user to 

depart at 7:45 given this would project an arrival within the target arrival window of 7:50am to 

8:00am. Thus, the ATIS user would consistently arrive 10 minutes early. 

To mitigate this recurrent early arrival effect of the fixed 10-minute arrival window, the arrival 

window we will set to vary by origin, destination, and time of day while remaining the same 

from day to day. The target arrival window for ATIS notification is now calculated during the 

training period, in a similar fashion to the calculation of the habitual commuter buffer.  The 

habitual traveler’s buffer time, BH, is a function of his trip time variability in the training period, 

σH , and his lateness tolerance, i.e., the percentage of trips he needs to be on time. This is shown 

in Equation 1 where z95% is the z-statistic corresponding to the probability of an on-time arrival 

95% of the time assuming a normal distribution of travel time from day to day. The σH is based 
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on the variability of travel times across the training period for a specific trip defined by origin, 

destination, and scheduled arrival. 

%95zB HH ⋅= σ  (1)  

Similarly an ATIS buffer can also be calculated to represent the variability in travel predictions 

during the training period. But, in calculating the ATIS variability, the ω factor that adjusts the 

ATIS estimated travel time by the average prediction error in the training period, is applied to the 

ATIS predicted travel time (equation 2). The ATIS service recommends departure at the first 5-

minute departure time where either the arrival time is within the arrival buffer Ba or waiting five 

more minutes would mean a late arrival assuming the travel time remained the same. Therefore, 

Ba (equation 3), is now used as the new variable arrival window buffer in place of the fixed 10-

minute value. 
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where 

n = number of training days 
ti =  travel time on day i 

p
it  =  ATIS predicted travel time on day i 

ω =  trip time adjustment factor for savvy ATIS user 

2.2 Departure Buffer, ATIS Target Arrival Buffer, and ATIS Adjustment Factor 
Calculations 

As stated in Section 1.2, during training, the habitual commuter adds a buffer time to his average 

trip time to aim for a specific level of on-time reliability. The ATIS user adopts a target arrival 

buffer time during training. In addition, the ATIS user incorporates the ATIS adjustment factor, 

ω, to adjust for a bias in the ATIS prediction. The ATIS adjustment factor, ATIS target arrival 

buffer, and habitual trip buffer in previous versions of HOWLATE were calculated for a 

departure time that is based on the average travel time over the habitual path. In reality, these 

buffers and the ATIS adjustment factor are exercised at an earlier departure time, based on both 
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the average travel time and the buffer time. Therefore, the buffers and ω should be based on the 

actual habitual departure time (for example 7:14am) and not the departure time based only on 

average travel time. This is illustrated in Figure 2.1. 
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Figure 2-1 Calculation of Buffer Factors and ATIS Adjustment Factor 

To resolve this inconsistency, iterative estimates of the three variables (ATIS adjustment factor, 

ATIS buffer, and habitual buffer) are calculated until the departure decisions of the paired 

commuters are essentially the same, and yields consistent buffers and ATIS adjustment factor 

from one iteration to the next. On average, 2 iterations were required to derive these estimates. 

2.3 Method for Incorporating Partial ATIS Coverage 

In order to test partial ATIS coverage strategies, we first needed to define the ATIS service and 

user processes associated with partial-trip information. For commuters processing ATIS 

information that covers only a portion of their trip, we hypothesize that the commuter will use 

their memory to fill in data gaps to arrive at a full trip travel-time estimate. Conversely, the ATIS 

service may need to use historic time-variant travel times where no surveillance information 

exists to derive an entire-trip travel time.  To this end during the evaluation period, for each link 

having ATIS surveillance the ATIS uses will use real-time ATIS travel time estimates. 

Unmonitored links are assumed to have the average travel time by time of day that occurred 

during the training period. The ATIS service aggregates links with and without information and 

reports a total trip time to users. Note that in the case of trips containing links with no 

surveillance, the average travel time during training is used in notifying users when to depart. 

Detailed implementation of this heuristic is presented in Appendix A1 of this report. 



 

13 
 

2.4 Key Parameters Representing Simulated Commuters  

In conducting simulated paired driver trials the ATIS user and non-user both aim for an on-time 

arrival rate of 95% in all analyses conducted and described in this report. The ATIS non-user is a 

commuter that is familiar with the network with respect to identifying the best route and 

departure time, on average. This commuter in previous studies (Jung et al, 2) was called the 

“F95” commuter. The ATIS user counterpart, called “A95” is also familiar with the network, and 

furthermore, is aware of the relative inaccuracies of the ATIS. Therefore, the ATIS user will 

adjust the ATIS report to reflect this awareness (as described in Section 1.2)  

Two key parameters related to the F95 and A95 commuters are held constant in all the 

experiments performed:  route diversion threshold, and potential departure window for ATIS 

users. Another parameter, ATIS error band, is also held constant in the experiment related to 

ATIS coverage. Following are the specifications for these parameters. 

As in Wunderlich (1) an indifference threshold for route switching is set to three minutes, based 

on the work of (Srinivasan and Mahmassani, 22). The window in which the ATIS service looks 

to notify the ATIS user of a change in trip departure time or route is centered about the habitual 

time of trip start.  For this study, we assume that the service begins scanning 30 minutes before 

the trip start time to see if early departure time notification is warranted – and up to 30 minutes 

after the trip start time for late departure time notification. The link travel time error bands used 

to generate the Monte Carlo realizations of actual travel times in HOWLATE remain unchanged 

from Wunderlich (1) as applied to Section 4. Table 2-1 lists these error bands that were 

determined by conducting a number of travel time runs on I-66 and Route 50 in the Washington 

metropolitan area (Hardy et al., 7). 

Table 2-1  Link Travel Time Error Bands 

 Congested Regime Uncongested Regime
Facility Bias Coefficient 

of 
Variation 

Bias Coefficient 
of Variation

freeway 0% 10% -10% 25% 
arterial -10% 20% -5% 5%  
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2.5 Key Performance Measures 

As in Volume I and II (Wunderlich, 1; Jung, 2), we define four core measures of effectiveness: 

on-time reliability, just-in-time reliability, schedule delay, and travel expenditure, and travel 

budget. These are a direct measurement of trip outcomes and are defined in the following 

paragraphs: 

On-time reliability is defined as the proportion of simulated yoked trials wherein a traveler 

arrives at the destination node at or prior to the target arrival time. Just-in-time reliability is 

defined as the proportion of simulated yoked trials wherein a traveler arrives at the destination 

node both on-time and no more than 10 minutes early. Schedule delay is defined as the 

difference between the actual arrival at the destination and the target time of arrival.  If schedule 

delay is negative, it is called early schedule delay.  If it is positive it is termed late schedule 

delay. 

Travel expenditure is defined as the time between trip start and the target arrival time, as well as 

any late schedule delay.  Travel expenditure is the same measure defined in Wunderlich (1) as 

travel budget.  We reserve the term travel budget in this study to refer only to the amount of time 

between trip start and target arrival time.   

Disutility, a measure incorporating trip duration, and schedule delay proposed in Volume II is 

also applied in this document. Dollar-valued disutility provides a measure of disutility associated 

with a trip by assigning a cost to the duration of travel time and how early or late one reaches 

one’s destination based on the work of Small et al. (6).  The disutility of in-vehicle travel time is 

set at $3.38/hour based on their research. The cost of early arrival is a quadratic function of the 

magnitude of early arrival. The cost of a late arrival is a linear function of the magnitude of late 

arrival plus a one-step penalty for arriving late. Note that the cost of late or early arrival is not 

sensitive to the duration of the trip, however. That is, being five minutes late has equal disutility, 

or cost, regardless of the fact that the trip may be five or 50 minutes long. The disutility function 

is defined functionally as: 

LSDESDE θDγ(SDL)(SDE)β(SDE)βαTc ++++= 2
22  

T:  Travel Time 
SDE: Schedule delay early 
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SDL: Schedule delay late 

DL:  Late arrival index  


 >

otherwise0
0if1 SDL

 

The estimates of the parameters are: 

α:  $0.0564/min. (linear cost of in-vehicle travel time) 
 βSDE: $-0.023/min  (linear component of quadratic early cost) 
 βSDL: $0.005/min (quadratic component of quadratic early cost) 
γ:  $0.310/min (linear cost of late arrival) 
θ:  $2.87 (one step penalty for arriving late) 

Figure 2-2 illustrates the shape of the dollar-valued disutility function for both 30 and 60 minute 

duration trips. 
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Figure 2-2  Dollar-Valued Disutility Function based on Small et al. 

2.6 Notification ATIS Services and Current ATIS Services 

It is important to note that the ATIS benefit assessment conducted here is not an evaluation of 

the current SmarTraveler system in Washington DC or in St. Paul/Minneapolis, nor the PEMS 

system in Los Angeles.  What is modeled in HOWLATE is a prospective notification-based 
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service based on the same basic data collected and disseminated by the two service providers.  

Users of the two service providers access the service through the Internet and must construct 

their own estimates of travel time on multi-link routes.  Seen this way, the notification service we 

prospectively model here manipulates the travel time data to suggest changes in trip timing and 

route choice in manner that is possible but time-consuming for the current ATIS user.  Further, 

the accuracy of the data is based on comparisons of SmarTraveler reported travel time and 

experienced travel time in instrumented probe vehicles on only two facilities in the Washington 

area.   Findings from other more comprehensive studies of ATIS accuracy indicate that the error 

bands used herein may be somewhat optimistic.  The overall result is that the benefit estimates 

made in this report are likely to be somewhat higher than would be realized by a user of the 

SmarTraveler system in either of the two metropolitan areas studied. 
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3 IMPACT OF ATIS ACCURACY ON USER BENEFITS 

An important consideration when evaluating the benefit of ATIS is the accuracy of the 

information provided to the user. Intuition suggests the more accurate the information the more 

likely a user is to realize benefit from using the service. In this section, accuracy will be 

examined with respect to point-to-point travel time estimation. 

No ATIS service is perfectly accurate. Traffic advisory services may be out of date or omit 

important events. Services relying on direct measurement of traffic conditions depend on reliable 

and accurate sensors. With the exception of automatic vehicle identification (AVI) systems, 

providing users with point-to-point travel times involves some sort of estimation procedure, most 

often from spot speeds measured with loop detectors. AVI systems are not free from error either. 

These systems read electronic tags on individual vehicles at successive detection stations to 

directly measure travel times of equipped vehicles. However, each detection station must have 

precisely synchronized clocks to accurately measure travel time, and a high enough proportion of 

vehicles must be equipped with tags in order for travel time estimates on a segment to be updated 

often enough. Even if detection was perfect, however, rapidly changing conditions can cause 

advisory information to the public to be inaccurate by the time it is received. Furthermore, traffic 

measurements are necessarily averages over a number of vehicles passing a point or traversing a 

segment. By preference, individual drivers may travel faster or slower than the average flow of 

traffic so that even if average conditions are measured without error, there will still be some 

inaccuracy in an individual’s travel time or speed estimates. 

ATIS accuracy can be improved in a number of ways. One way is by increasing the density of 

sensors already deployed (e.g., one per ½-mile from one per mile). Another is by improving 

sensor maintenance. Loop detectors have finite life spans so the quality of the information from a 

regional ATIS is likely related to the percentage of loops in service at any given time. Some 

systems also require periodic calibration. Single loops may be used to measure speeds only if an 

average vehicle length is known. However, this involves tracking the proportion of truck traffic, 

which varies by location and time of day, another source of inaccuracy. (Rice & Van Zwet, 

23)Finally, accuracy may be improved through moving to a more advanced technology. A 

properly deployed and well-maintained AVI system with adequate market penetration is likely to 
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provide better estimates of point-to-point travel times than a system based on loop detectors 

because it measures travel time directly. 

Clearly though, improving the accuracy of an ATIS comes with a cost. Perfect accuracy is the 

ideal, but in the real world such a goal is not realistic. In reality there is a continuum of accuracy 

that ranges from excellent to good, to good enough, to not good enough. Moving up this 

continuum costs money, that otherwise could be used for other projects. Decision makers need to 

first know if their ATIS deployments are accurate enough to provide benefit to their users. 

Secondly, they need to know whether moving up the accuracy continuum is cost effective 

relative to other available spending options. 

In summary, the purpose of this study is to identify the acceptable level of estimation error in 

point-to-point travel times reported by a regional ATIS to maintain consistent benefits to users 

based on performance measures pertaining to on-time reliability. Furthermore, we want to 

measure the sensitivity of benefit to that error, i.e., the expected result of improving the accuracy 

of a deployment by one percent. Finally, we want to determine the value of travel time 

prediction. The goal of this evaluation is to take a step toward a larger decision framework that 

will help ITS decision makers wisely deploy regional ATIS services based on their true costs and 

benefits. 

This section is organized as follows: Section 3.2 reviews the relevant literature and provides the 

methodology for this study; Section 3.3 describes the experimental design; Sections 3.4 and 3.5 

show the findings regarding the critical point of ATIS error and the value of prediction, 

respectively; and Section 3.6 gives conclusions and future work. Findings and conclusions are 

based on the use of data from three cities: Los Angeles, CA; Washington, D.C.; and 

Minneapolis/St. Paul, MN (hereafter referred to as the Twin Cities). 

3.1 Literature Review 

The literature pertaining to accuracy and ATIS benefit can be partitioned into two types of 

studies. The first deals with the measured accuracy of existing ATIS deployments and current 

sensor technology. The second uses simulation to try and measure the effect of inaccuracy on 

user benefit. 
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A pair of studies measured the accuracy of ATIS deployments. In a loop detector-based 

deployment in San Antonio, Texas, the algorithm converting loop detector speeds produced link 

travel times that differed from probe vehicle travel times with a coefficient of variation of 17% in 

the AM peak and 2.7% in the off peak (Quiroga, 24). This is prediction error since it is a 

comparison between the predicted link traversal time at link entry and experienced travel time. 

Another study measured the accuracy of AVI in Houston, Texas, against probe vehicles (Eisele 

& Rilett, 25). They found that for the corridor studied, the AVI-measured travel times for 

individual probe vehicles matched their true travel times to within 1-2%. However, for an ATIS 

application, reported travel times depend on sufficient market penetration to keep estimates up to 

date and to smooth variations between drivers. 

An extensive evaluation of different sensor types was conducted on a test bed on Route 6 in 

College Station, Texas (Middleton et al., 26). Sensors of all types were evaluated based on 

several criteria such as presence measurement accuracy, speed measurement accuracy, 

installation and maintenance costs, etc. A microwave detector was found to consistently measure 

speeds to within 10%. An acoustic sensor was found to have an 8% coefficient of variation about 

the true speed. Finally, a video image detector (VID) was found to have a coefficient of variation 

of 12% about the true speed. These are measurement accuracies and do not include possible 

errors from extrapolating spot speeds to link speeds, the frequency with which estimates are 

updated, or sensor reliability. 

A travel time study in the Washington, D.C., metropolitan area, was designed to test the accuracy 

of the SmarTraveler internet-based travel time estimation service. (Hardy et al., 7) SmarTraveler 

manually estimates travel times based on qualitative incident reports, weather, and phone calls 

from regular commuters. For this study, a probe vehicle equipped with a GPS-Based Odograph 

Prototype traversed a freeway (I-66) and parallel arterial route (U.S. 50) into Washington, D.C., 

from suburban Virginia. These trips were made over a period of several days and during a 

variety of times throughout the day. Data was collected on link travel times. This data was then 

compared to the corresponding SmarTraveler reported time. It was determined that the 

SmarTraveler service overestimated travel times on the freeway by 13% and 21% on average in 

congested and uncongested traffic, respectively. On the arterial, the service underestimated travel 

times by 18% in congested traffic and overestimated travel times by 14% in uncongested traffic. 
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Travel time coefficient of variation on the freeway was found to be 17% and 9% in congested 

and uncongested traffic, respectively. On the arterial, those values were 26% and 6%. 

A second study of SmarTraveler, this time in the Twin Cities metropolitan area, had similar 

findings (Toppen et al., 9). The ATIS travel time error was based on archived data from the 

SmarTraveler web site and probe vehicle runs undertaken as part of an unrelated ramp metering 

evaluation study (Cambridge Systematics, 8). The error was found to be lower during 

uncongested conditions. However, even then the service overestimated travel times, on average, 

by 16%. The error covariance was 24%. During congested conditions, defined as times when the 

reported travel time was more than 30% higher than the free flow travel time, the service 

overestimated travel times by 32%, on average, and the error covariance was 33%. 

Several other previous studies have sought to identify the effect of information accuracy on 

ATIS benefits (Glassco, et. al., 27; Oh & Jayakrishnan, 28). The objective of these studies was to 

find the market penetration required for route guidance systems to be beneficial. However, they 

also tracked information accuracy, though this inaccuracy was due to the redistribution of traffic 

on the network in response to the information rather than inaccuracy in the primary measurement 

and estimation of travel times. In the first of these studies, information given to vehicles 

equipped with route guidance systems was assumed to be perfect. The second of these studies 

used a dynamic traffic assignment model. Due to driver response to the route guidance, the 

information was not necessarily 100% accurate because the decisions made by drivers of other 

equipped vehicles may alter the forecasted travel time made by the route guidance system. Route 

travel time estimation error was at a minimum at 10-20% market penetration of probe vehicles. 

When estimates were updated every 30 seconds, route travel time estimation error was stable 

even as market penetration went to 100%. At update intervals of 5 minutes, however, route travel 

time estimation error increased as market penetration increased beyond 10%. The authors 

explain that when a high proportion of traffic is responding to route guidance, “over-shifting” 

may occur. When update intervals are long, the route guidance system is unable to correct itself 

quickly enough. In terms of travel time savings, which was the key measure of effectiveness of 

the route guidance system, users of the route guidance ATIS saw a 13% travel time savings over 

non-users at market penetrations below 20%. At this point, the route travel time estimation error 

was approximately 13%. 
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In summary, there are few published studies of sensor and ATIS deployment accuracy, though it 

appears that AVI is the most accurate technology provided there is adequate market penetration 

and the system is properly calibrated. Point sensors tend to measure speeds with approximately 

10% error, and based on the study in San Antonio, this can result in an error of approximately 

17% in point-to-point travel time estimation from point speeds. Since the majority of ATIS 

deployments employ point speed sensors, this figure may be the best benchmark for the state of 

the current technology. Many studies of ATIS benefits focus on the sensitivity of benefit to 

market penetration rather than the accuracy of the ATIS information. They do show that when 

market penetration is high, the effect of user response to travel time estimates may detrimentally 

affect the accuracy of those estimates. However, given that market penetration for ATIS services 

of this type is far from the point where this has an impact, the accuracy of travel time estimates 

coming from sensors should be given primary consideration. 

3.2 Experimental Design 

We use the HOWLATE methodology (as described in Section 2) to identify ATIS user benefits 

under varying levels of ATIS accuracy. In conducting this experiment, we first make a 

distinction between measurement and prediction error as they pertain to ATIS accuracy (Section 

3.3.1). We then define specific study objectives and hypotheses in Section 3.3.2. Based on these 

objectives, we define the dependent and independent variables of the experiment in Section 

3.3.3. Section 3.3.4 describes how travelers behave in the presence or absence of information 

while Section 3.3.5 lists the sources and content of the data. Finally, in Section 3.3.6, we outline 

the key limitations of the selected method of experiment. 

3.2.1 Types of Error 

Based on the model of pre-trip, travel time-based ATIS used in this study, ATIS users receive an 

estimate of their travel time on a recommended fastest route, and then depart on their trip with 

the goal of arriving just in time. The accuracy of the service, from their perspective, is how 

closely the travel time reported by the ATIS matches their actual travel time. The percent 

difference will be defined, for purposes of this paper, as prediction error, because it has a 

predictive element; in order to be accurate, it has to factor how conditions will change over the 
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course of the trip. What we will define as perfect prediction, accurately predicts the ATIS user's 

travel time and thus, the exact time he will arrive at his destination. 

In reality, however, the future is unknown. Any number of weather, accident, or other type of 

events could occur on a traveler's route between when the travel time estimate is made by the 

ATIS and when he arrives at his destination. What may have been an accurate estimate of traffic 

conditions when it was made could turn out to be very inaccurate by the time the trip is 

completed. Travel time estimation based only on currently known information, i.e., current 

measurements from sensors, will be defined for purposes of this paper, as measurement. The 

percent difference between the measurement estimate and the actual travel time based on 

prevailing conditions is measurement error. Perfect measurement reflects perfectly performing 

sensors, and if the measurement is point speeds (e.g., loop detectors), perfect translation from 

point measurements to travel time over a segment. However, it does not necessarily mean a 

perfect estimate of travel time for an ATIS user. 

Errors in a travel time estimate can be divided into two components: bias (systematic) error and 

noise error. Bias is the tendency to over or under estimate, on average. For instance, if speeds 

measured from single loop detectors are based on an assumption of average vehicle length that is 

too low, speed estimates will be systematically high. Given a well-calibrated system, this could 

potentially be eliminated. Moreover, regular users of ATIS are likely to adjust ATIS travel time 

estimates to account for bias error. Therefore, we will only consider noise error in this study. 

When there is no bias, the remaining error is noise, where the estimate is equally likely to fall 

above or below the true value. The lower the noise error, the higher the probability the estimate 

will be close to the true value. Figure 3-1 (top) illustrates the nature of this noise component 

through a series of random draws. This figure shows, for the same trip at the same time on the 

same day, 100 hypothetical scenarios of what the estimate could have been, given two levels of 

accuracy. This is prediction error – error relative to the actual travel time. 

Figure 3-1 (bottom) shows the distinction between prediction error and measurement error. Both 

consist of the noise error component only (no bias). The difference is what the error is relative to. 

Measurement error is noise relative to perfect measurement. However, if conditions change over 

the course of the trip, even perfect measurement is inaccurate relative to the actual travel time. 
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This difference can be referred to as the effect of aging – the information becoming out of date. 

Therefore, measurement error has one component of error relative to perfect measurement 

(noise), but two components relative to the actual travel time (noise and aging). Figure 3-1 

(bottom) shows these two components of error relative to the actual travel time. 
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Figure 3-1.  Graphical Depiction of Prediction Error (top) and Measurement Error (bottom) 

 

Figure 3-2 shows this in a different way. It can be seen in Figure 3-2 (top) that regardless of 

factors such as average trip length and system variability, the travel time prediction error is equal 

to the noise error. For travel time measurement, however, error relative to the actual travel time 

increases with factors such as system variability and average trip length because these affect the 

aging component. The effect of aging is depicted in Figure 3-2 (bottom). As aging error 

increases, the user realizes less benefit. This reduction in benefit is the value of prediction. The 
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relationship between system variability and trip length and aging is merely hypothesized at this 

point, but is included here to help clarify the definitions used in this study. 
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Figure 3-2.  Graphical Depiction of Error Components (top) and Hypothesized Effect on User 
Benefit (bottom) 
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3.2.2 Study Objectives and Hypotheses 

There are three primary objectives to this study. The first is to identify the point of error at which 

ATIS becomes useful, also called the “crossover” point of error, e*. By definition, when error is 

less than e*, the information is accurate enough for regular use of ATIS to provide benefit for the 

average aggregate trip. When error is greater than e*, it is more advantageous to not use ATIS, 

but rather to maintain a habitual route and departure time irrespective of day-to-day fluctuations. 

It is expected that when day-to-day travel time variability is high, e* will be greater and as a 

result, users will still benefit at higher levels of ATIS error. When variability is low, it is harder 

for ATIS to improve upon habitual behavior because travel times are more predictable. As a 

result, it is expected that the service must be more accurate to provide benefit when there is less 

variability. 

The second objective is to determine the marginal benefit at any point of ATIS error. It is 

expected that as error approaches zero (100% accurate), each percentage of accuracy gained will 

result in less and less benefit and at higher levels of error (lower accuracy) each percentage point 

of accuracy gained will provide a greater benefit improvement. 

The third objective is to determine the value of travel time prediction. For this experiment, 

benefits will be evaluated with an ATIS where travel time estimates are based on measurement. 

The independent variable is the same as previously: ATIS noise error. However, as described 

previously, when travel time estimates are based on measurement, the noise error is relative to 

measurement. Therefore, relative to a user's actual travel time, the estimate will include 

additional error from aging. By comparing user benefits with the same amount of noise error, we 

can determine the effect of the aging component of measurement error. This will determine the 

value of eliminating or reducing this aging component, which in turn, is the value of prediction. 

We hypothesize that travel time prediction will have some value relative to measurement and 

that that value will depend on system variability and trip length. However, the majority of ATIS 

benefit will be achievable from measurement alone. 

3.2.3  The Dependent and Independent Variables 

To test the effect of ATIS error on user benefit, multiple benefit analyses are conducted, each 

with a different level of noise error. Noise error is assumed to be normally distributed with 
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coefficient of variation, e. The first set of experiments considers error to be prediction error. The 

travel time estimate Test(t), calculated for a trip, is therefore: 

 retTtTtTest ⋅⋅+= )()()(  (1)  

where T(t) is the actual travel time given a departure time of t, e is the error, and r is a standard 

normal random variate. A single random number, r, is drawn for each trip and applied to the 

actual travel time, T(t), at every decision point, t, until departure. The error, e, is therefore the 

coefficient of variation of a normal distribution of travel time centered on T(t). Because error is 

introduced on the trip level, no portion of the network is assumed to be more accurate than any 

other. A trip is defined as having a unique origin, destination, and target time of arrival on a 

given day. 

A second set of experiments is designed to determine the value of prediction. These experiments, 

consider error to be measurement error. In these cases, error is introduced the same way with the 

exception that T(t) in Equation 1 is the travel time based on prevailing speeds. The specified 

level of error is therefore the amount of noise relative to perfect measurement as described in 

Section 3.3.1. 

The dependent variable is the average utility improvement from ATIS across all possible 

recurring trips across the network. For each trip a utility (or disutility since travel is a cost) can 

be calculated based on the utility function (Small et al., 6) described in Section 2. Utility was 

chosen as the primary trip performance measure because it does the best job of incorporating in a 

single value three aspects of a trip's cost: in-vehicle travel time and earliness or lateness of 

arrival. Improvement in utility is the disutility reduction that comes from using ATIS, the 

difference between the disutility of the ATIS user and the non-user for the same trip. 

3.2.4 Traveler behavior profiles 

The traveler profiles used in this study were F95, the habitual traveler, and A95, the ATIS user. 

Descriptions of these traveler profiles summarized in Section 2.4 and are presented in greater 

detail in Jung et al, (2). All information is received pre-trip and is in the form of an estimate of 

the travel time of the intended trip and a recommended fastest route. ATIS users (A95) allow 

themselves an arrival buffer proportional in size to the mean squared difference between the 
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ATIS reported trip travel time and the true travel time during the training period. Clearly, when 

travel time estimation error is high, the ATIS user will be conditioned to this error and will 

therefore leave a larger arrival buffer. The result is that when error is high, ATIS users maintain 

their target on time reliability (95%) but tend to arrive very early. 

3.2.5 Data Sources and Content 

The methodology and experimental design of this study are applied to data from Los Angeles, 

CA; Washington, D.C.; and Minneapolis/St. Paul, MN. The data for Los Angeles comes from 

PeMS, the California Freeway Performance Measurement System, which estimates segment 

travel times at 5-minute intervals in Los Angeles and Ventura Counties. PeMS estimates travel 

times from speeds measured by loop detectors. These data are posted to the PeMS website 

(http://pems.eecs.berkeley.edu, 29) in real-time and stored in a historical archive. The data used 

in this study were retrieved directly from the archive. The data for Washington and the Twin 

Cities come from SmarTraveler (http://www.smartraveler.com, 30), which estimates travel times 

using human judgment in response to weather, incidents, construction, and time of day averages. 

Travel times were collected from the SmarTraveler website at 5-minute intervals and stored in an 

archive. Because these travel times are crude estimates of the true conditions, randomization is 

applied to simulate what the true conditions may have been based on the SmarTraveler estimates 

(Wunderlich, 1). No randomization is applied to the PeMS ATIS data, however, as they are 

assumed to be good estimates of the actual travel times. 

The training period for Los Angeles is comprised of 42 days from September 20, 2001 through 

December 19, 2001. The evaluation period is comprised of 100 days from January 10, 2002 

through July 1, 2002. In the Twin Cities, the training period is comprised of 39 days and in 

Washington, 33 days from March through May 2000. The evaluation period is comprised of 176 

days in the Twin Cities and 179 days in Washington from June 1, 2000 to May 31, 2001. The 

difference in number of days in the two cities is due to gaps in the data archiving process. 

In Los Angeles, the start time for the analysis is 5:30 A.M. and the ending time is 9:00 P.M. The 

peak periods were determined from a clustering analysis based on average network speed by 

time of day, which is the average segment speed, weighted by segment length. They are 6:30 

A.M. to 9:00 A.M. and 2:30 P.M. to 6:45 P.M. 
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 In the Twin Cities and Washington, the start time for the analysis is 6:30 A.M. and the ending 

time is 6:30 P.M., the period of the day for which SmarTraveler consistently provides travel time 

estimates. The peak periods, calculated in the same way as for Los Angeles, are 7:00 A.M. to 

9:00 A.M. and 4:00 P.M. to 6:30 P.M. in the Twin Cities, and 7:00 A.M. to 9:30 A.M. and 4:15 

P.M. to 6:30 P.M. in Washington, D.C. 

3.2.6 Known Limitations 

Three known limitations to this study are a lack of consideration to demand patterns, disparities 

in data quality, and general difficulty of accurately modeling driver behaviors. 

The results of this study do not incorporate regional demand patterns. All possible trips are 

evaluated, which includes every possible origin, destination and target time of arrival across the 

geographic region and throughout the day. All trips are then weighted equally irrespective of 

demand. Two examples show how this is problematic. During the morning peak both inbound 

and outbound trips are weighted equally even though in reality, demand is greater for inbound 

trips than for outbound trips (the reverse is true in the afternoon). Secondly, when considering all 

trips (as opposed to grouping by peak), trips made during off-peak hours are treated with the 

same importance as peak period trips even though fewer trips are made in the off-peak than 

during the peaks. The consequence of these two examples is likely to be an understatement of 

ATIS benefits since it gives undue weight to trips where there is less demand and therefore, less 

congestion, and these are the trips for which ATIS does not benefit the user as much. 

The SmarTraveler data (Washington, Twin Cities) is generally less accurate than the PeMS data 

(Los Angeles). SmarTraveler's method of estimating travel times from incident and construction 

reports is less reliable than PeMS's method of direct measurement of traffic from roadway 

sensors. Furthermore, the SmarTraveler may understate day-to-day variability, a key determinant 

of ATIS user benefits. This makes comparisons between the cities more difficult. 

As with any modeling effort, describing human behavior is a difficult task. The traveler 

behaviors used in this study, including the ATIS user and the habitual traveler, are meant to be 

plausible representations of how people actually make travel decisions. However, it is not 

possible to capture the diversity of response to traveler information that exists across the driving 

population. Furthermore, the human thought process is complex and often irrational. We were 
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therefore forced to simplify the route selection and departure time decision processes for 

modeling purposes. 

3.3 Results 

3.3.1 The Critical Points of ATIS Prediction Error 

Utility improvement from ATIS as a function of ATIS prediction error is shown in Figures 3-3, 

3-4, and 3-5 for AM peak trips, PM peak trips, off peak trips and all trips, for Los Angeles, 

Washington, and the Twin Cities, respectively. The crossover points e* are given in Table 3-1 

for each time of day. Error in this case, is relative to perfect prediction. 
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Figure 3-3. Improvement in Utility as a Function of ATIS Prediction Error – Los Angeles  
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Figure 3-4. Improvement in Utility as a Function of ATIS Prediction Error – Washington 
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Figure 3-5. Improvement in Utility as a Function of ATIS Prediction Error – Twin Cities 
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Table 3-1. Crossover Points of ATIS Measurement Error – All Cities based on On-Time 
Reliability 

 Los Angeles Washington Twin Cities 

All Trips 17% 10% 11% 

AM Peak 19% 10% 11% 

Off Peak 13% 6% 9% 

PM Peak 21% 13% 15% 

 

In Los Angeles, the crossover point e*, ranges from 14% to 22%. In Washington and the Twin 

Cities, it is lower (9-14% and 10-15% respectively). Reasons for this difference can be found in 

the primary data - link speeds. Average network speed and speed variability by time of day are 

shown in 3- 6 and 3-7, respectively.  
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Figure 3-6. Network Average Speed by Time of Day– All Cities  
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Figure 3-7. Network Speed Variability by Time of Day – All Cities 

For each city, average speed and speed variability are highly correlated. During the peaks 

average speed decreases and speed variability increases. The crossover point of error also 

increases during the peaks as shown in Figure 3-8. Above the line, ATIS is beneficial to users in 

that city, while below the line, it is not accurate enough to provide overall benefit. For any given 

city, this crossover point may be correlated to average speed, speed variability or both. However, 

by comparing different cities it becomes clear that it is more highly correlated with speed 

variability than average speed. Los Angeles, which has the highest variability, also has the 

highest e* across the day despite having the highest average speed of all the cities. Washington 

has the lowest network speeds because it includes more arterials than the other cities. This shows 

that it is not the magnitude of congestion but the variability that is the important factor in 

determining how accurate an ATIS needs to be. 
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Figure 3-8. Crossover Point by Time of Day – All Cities 

While results for more than three cities are needed to make firm conclusions, the correlation 

between e* and variability suggests it may be possible to predict the necessary accuracy of a 

planned ATIS prior to deployment. The greater the speed variability, the greater is the tolerance 

for error. 

Another item to note is the benefit when error is low. This gives a sense of how much benefit is 

possible under the most accurate deployment. According to Figures 3-3, 3-4, and 3-5, the 

maximum benefit is not achieved when accuracy is perfect, but rather when error is 1% to 2%. 

As is often the case, models tend to break down at the boundary conditions. This particular result 

comes from the constraint that the ATIS user may only depart on a multiple of five minutes past 

the hour. Thus, at every decision point, if he chooses to delay his departure, the soonest he can 

leave is in five minutes. When his information is very accurate, he learns this in the training 

period and as a result, leaves himself little extra time to account for error in the estimate. When 

this is the case, a small unexpected increase in travel time over that five minutes results in him 
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arriving late. When the estimate is less accurate, he leaves himself a buffer proportional to the 

average error in the training period, which allows him to be less affected by such circumstances. 

The maximum benefit achievable from ATIS is $2.23 in Los Angeles, $1.29 in Washington, and 

$0.60 in the Twin Cities. This is a function of average trip length and day-to-day trip time 

variability. The average trip length, a function of the coverage area of the data source and the 

makeup of the network (i.e., the network connectivity and the number of short links), is 23.7 

miles, 21.2 miles and 14.1 miles in Los Angeles, Washington, and the Twin Cities, respectively. 

This translates to 9.4¢, 6.1¢, and 4.3¢ per mile, respectively. The greater per-mile benefit in Los 

Angeles could be attributed to greater variability, but a disparity exists between Washington and 

the Twin Cities despite little difference in variability between these two cities. If regional 

demand patterns were accounted for, average trip length would be a function of actual trip 

demand and not a function of the coverage area and network type. This would better isolate the 

role of travel time variability in trip utility. 

3.3.2 Marginal Benefit 

At any point along the error continuum, the slope of the benefit curve gives the marginal benefit, 

which is the slope of the benefit curve. Marginal benefit is the benefit that would result from 

improving accuracy 1%. For all trips in Los Angeles, this is shown in Figure 3-9. Though not 

shown, plots for other cities and other times of day depict the same trend: as error increases, the 

slope becomes more negative indicating a higher impact of accuracy improvement (or 

degradation) at higher levels of error. 

For a hypothetical ATIS deployment, the higher the current level of error the greater is the 

benefit achievable by improving accuracy. Cleary if the deployment has error greater than e*, it 

is very important to improve accuracy because overall, the system is not beneficial. Beyond that 

point, the return diminishes as accuracy improves. If the deployment is already very accurate, the 

benefit may not justify the cost of accuracy improvements. In Los Angeles, it makes little sense 

to reduce error to below 5% since at that point nearly all of the potential benefit is already 

realized. Of course, cost is an important element in such a decision. There are plans to extend 

this study to incorporate cost estimates and ATIS market penetration. 

 



 

35 
 

-$2.00

-$1.50

-$1.00

-$0.50

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30%
ATIS Travel Time Error

U
til

ity
 ($

)

-$0.20

-$0.15

-$0.10

-$0.05

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25
M

arginal U
tility ($)

Benefit Marginal Benefit  

Figure 3-9. Marginal Benefit as a Function of ATIS Error – Los Angeles, All Trips 

3.3.3 The Critical Points of ATIS Error by Other Performance Measures 

To this point, the dependent variable has been average improvement in utility. However, there 

are other performance measures worth considering as well. This section examines how other 

performance measures are affected by ATIS error. 

Table 3-2 shows the crossover point of ATIS error based on just-in-time reliability (JITR). Just-

in-time reliability is defined as the percentage of trips the traveler arrives on time and not more 

than ten minutes early. While OTR does not change with ATIS error, JITR also reflects that 

when error is higher, the frequency of early arrivals increases. The crossover points based on 

JITR are nearly identical to when utility is the performance measure of interest. 

Table 3-3 shows the crossover point of ATIS error based on travel expenditure. Travel 

expenditure is defined as the time between trip start and the target arrival time, as well as any 

late schedule delay. Previous studies have found that the true value of ATIS comes less from 
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saving in-vehicle travel time but rather from improved time management (Wunderlich, 1; Jung, 

2). A traveler who needs to leave very early in order to not be late will waste a good deal of time 

by arriving early. While this time may be put to use, it is usually better spent prior to departure. 

These values are nearly the same as when utility or just-in-time reliability is the performance 

measure of interest. 

Table 3-2. e* by Just-in-Time Reliability 

 Los Angeles Washington Twin Cities 

All Trips 16% 10% 11% 

AM Peak 19% 8% 11% 

Off Peak 13% 9% 9% 

PM Peak 24% 14% 15% 

 

Table 3-3. e* by Travel Expenditure 

 Los Angeles Washington Twin Cities 

All Trips 17% 9% 9% 

AM Peak 19% 7% 11% 

Off Peak 12% 7% 7% 

PM Peak 23% 14% 13% 

 

Based on these results, e* does not depend heavily on the trip performance measure used. The 

results are nearly the same regardless of whether JITR or travel expenditure are used as the basis. 

This gives some credibility and robustness to the results so far. 

3.3.4 The Value of Prediction 

3.3.4.1 Comparing critical points of ATIS accuracy 

The results of the previous section treat error as prediction error – error relative to a perfect 

travel time prediction. This is the definition most closely tied to traveler experience. Given an 
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estimate of travel time, the user’s perception of its error is the difference between when he 

expects to arrive, based on this estimate, and when he actually does arrive. Perfect prediction 

may not be the best benchmark, however. Typically the best estimate of the travel time for a trip 

is measurement of current conditions, which is travel time based on prevailing speeds, coupled 

with historic time-of-day averages. 

This section explores the value of predictive information over information based on 

measurement of current conditions. There are important implications to this topic. Short term 

forecasting of traffic conditions, i.e., predicting how incident and weather-induced congestion 

may propagate over time and space, is a difficult task. Clearly, accidents that haven't happened 

yet are impossible to predict. Newer applications, such as dynamic traffic assignment, attempt to 

predict and control the propagation of congestion in the short term, but for ATIS applications, 

the value of these forecasts, even if perfectly accurate, has yet to be studied. Since currently, 

ATIS market penetration is low enough that the influence of user response to the information 

may be disregarded, the key factor is how quickly pre-trip traffic information becomes outdated. 

To this end, we designed an experiment by which we compare the outcome of an ATIS non-user, 

the control subject, and two users of pre-trip ATIS, the experimental subjects. The first ATIS 

user is given an estimate of his travel time based on prevailing speeds. Even if perfectly 

reflective of current conditions, this estimate will ultimately be inaccurate depending on how 

quickly conditions change over the course of his trip. The second ATIS user is given an estimate 

that anticipates how conditions will change over the course of his trip. By comparing the 

outcomes of these two travelers to each other and to the ATIS non-user we can determine (1) the 

value of knowing current conditions over no real-time information and (2) the value of predictive 

information over knowledge of current conditions only. 

The results of the ATIS user with measurement-based estimates are shown in Figures 3-10, 3-11, 

and 3-12 and Table 3-4. As we would expect, benefit under measurement error is always less 

than under prediction error (Figures 3-3, 3-4, 3-5 and Table 3-1). Interestingly, in terms of e*, 

the difference between measurement and prediction is small. There is little difference between 

the levels of measurement accuracy and prediction accuracy required to achieve benefit. Clearly, 

at these levels of accuracy, the effect of the noise component of error dwarfs the effect of aging. 
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Figure 3-10. Improvement in Utility as a Function of ATIS Measurement Error – Los Angeles 
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Figure 3-11. Improvement in Utility as a Function of ATIS Measurement Error – Washington
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Figure 3-12. Improvement in Utility as a Function of ATIS Measurement Error – Twin Cities  

 

Table 3-4. Crossover Points of ATIS Prediction Error – All Cities 

 Los Angeles Washington Twin Cities 

All Trips 18% 11% 12% 

AM Peak 19% 9% 12% 

Off Peak 14% 10% 10% 

PM Peak 21% 14% 15% 

 

This begs the question: When, if at all, does information aging have a significant effect on the 

benefit of the ATIS user? Based on what has been presented so far, it seems to have a small 

effect when noise error is near e*. However, at very high levels of accuracy (i.e., when noise 

error is low), aging may figure more prominently. When this is the case, prediction has greater 

value. 
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3.3.4.2 Relative Costs of Noise and Aging 

We can measure the relative contribution of noise and aging error by determining how much cost 

each imposes on the ATIS user. The maximum ATIS benefit is realized when noise error is low 

(not necessarily 0% as was explained in Section 3.5.1, but rather 1% to 2%). As noise error 

increases, ATIS benefit declines until at some point, it is preferable to rely on habitual behaviors 

based on experience than to use ATIS (zero or negative benefit). Along this continuum, a 

percentage of the maximum benefit is achieved, the difference from the maximum benefit being 

a measure of the cost of error. Predictive ATIS consists only of noise error; the difference 

between this and the maximum achievable benefit is therefore the cost of noise error. 

Measurement-based ATIS consists of a noise component and an aging component. The 

difference between this and the maximum achievable benefit therefore reveals the sum of these 

two error components. The difference is the cost of aging, which reveals the value of prediction. 

This is shown in Figures 3-13, 3-14, and 3-15 for Los Angeles, Washington, and the Twin Cities, 

respectively. 
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Figure 3-13.  Cost of Noise and Aging Error Components Expressed as the Percentage of 
Reduction from Maximum Benefit – Los Angeles 
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Figure 3-14. Cost of Noise and Aging Error Components Expressed as the Percentage of 
Reduction from Maximum Benefit – Washington 
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Figure 3-15. Cost of Noise and Aging Error Components Expressed as the Percentage of 
Reduction from Maximum Benefit – Twin Cities  
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The first item to note from Figures 3-13, 3-14, and 3-15 is that the impact of aging is a function 

of the amount of noise error. As would be expected, when noise error is high, the impact of aging 

diminishes to zero. This is because the impact of noise error is so great it overshadows the effect 

of aging. When noise error is low, aging has a higher relative impact and prediction is more 

valuable. In Los Angeles, when noise error is greater than 10%, noise error accounts for more 

than 90% of the total error-related cost to the user. In Washington, and the Twin Cities, this 

value is 7% and 8%, respectively. When noise error is less than 6%, 5% and 5% for Los Angeles, 

Washington, and the Twin cities, respectively, aging has a greater impact than noise. Therefore, 

for deployments in cities with similar characteristics to these, the value of prediction is limited 

when noise error is greater than this. Since ATIS benefit is measured by utility, which is 

primarily a function of on-time reliability, the most important characteristic is likely to be day-

to-day travel time variability.  

As shown in the previous paragraph, the vertical distance between “noise” curve and the “noise + 

aging” curve is the cost of aging, which is the value of prediction. The horizontal distance is the 

amount of error aging imposes on the measurement-based travel time estimate. In the case of 

perfect measurement, this is 6%, 5% and 5% in Los Angeles, Washington, and the Twin Cities, 

respectively. Clearly, aging does not impose a large error on the estimate. 

3.4 Conclusions and Future Work 

In conclusion, the maximum level of error an ATIS deployment may tolerate if the average user 

is to realize benefit is between 10% and 22%. For ATIS deployments with more error, benefit 

may only be realized by certain portions of the driving population, such as those with long or 

highly variable trips.  

The crossover point of error increases with regional speed variability. It is lower for Washington 

and the Twin Cities where day-to-day variability is lower and higher in Los Angeles where 

variability is higher. It does not, however, increase with average travel speed, based on the data 

for these three cities. Washington, which had the lowest average speeds because of the number 

of arterial links covered by the ATIS, had a lower crossover point than Los Angeles, which had 

the highest average speeds. 
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In addition, marginal benefit decreases as accuracy improves. This result is consistent for the 

three cities. Because of this, at high levels of accuracy, there is less benefit to improving 

accuracy. Furthermore, the cost of improving an already accurate system is likely to be high. 

This suggests that the most cost effective deployment has some error, perhaps in the range of 5% 

to 15% in Los Angeles or 5% to 10% in Washington and the Twin Cities. In future work, cost 

data will be incorporated in a more detailed cost benefit analysis. One item to consider is the 

effect of improved accuracy on usage. As accuracy is improved, market penetration may increase 

meaning a smaller per trip benefit may not necessarily mean a smaller total-user benefit. 

Travel time prediction for ATIS applications has little value based on this study, though when 

noise error is low, it has some value. In Los Angeles, when error is greater than 10%, prediction 

has little value relative to measurement as the noise component of error overshadows the effect 

of information aging. It appears that for ATIS applications, travel time prediction has some 

value, though the first priority for any deployment is accurate measurement. Short-term 

prediction depends on accurate measurement and the question of whether or not it should be 

pursued depends on the cost of developing, testing and calibrating prediction algorithms. 

This work will be extended to include cost data for further cost benefit analysis. Trip demand 

data will also be incorporated in order to better represent the potential benefit of ATIS on a per 

user basis. Finally, additional metropolitan areas can be studied to further explore how much the 

results vary based on regional characteristics such as speed variability and population. 
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4 IMPACTS OF ROADWAY ATIS COVERAGE ON USER BENEFITS 

In developing a plan to deploy ATIS, decisions regarding the coverage, content, real-time nature, 

and accuracy of the system all depend upon the underlying traffic monitoring system –be it loop 

detectors, toll tag readers, or some other technology. Conversely in the deployment of traffic 

monitoring systems, decision makers need to consider a variety of travel management tasks, one 

of which is ATIS.  

Moreover, given limited funding, decision makers often cannot fund and deploy a region-wide 

traffic monitoring system in a single year. Instead, these systems evolve over many years through 

a series of incremental deployments. In developing incremental deployment plans, as well as in 

selecting the initial deployment, user benefits such as on-time reliability were not likely to be 

addressed or addressed only from a qualitative nature. This is explainable given that tools or 

techniques for evaluating and quantifying user benefits were not available, and that the focus was 

on traffic management.  

New technologies are changing the way traffic monitoring systems are designed and deployed. 

High-end traffic monitoring systems that support traffic management functions (eg. incident 

management and ramp metering) are expensive but not required everywhere in a metropolitan 

area. However, supporting traffic monitoring for ATIS provision can be less expensive and 

potentially cost-effective over a wider area. Therefore, decision makers have a new challenge 

and opportunity to develop cost-effective traffic monitoring programs that feature ATIS as the 

primary generator of user benefit. 

In order to provide decision-makers with insight and guidance on the deployment of traffic 

monitoring to support ATIS, we extend the HOWLATE methodology to evaluate the user 

benefits of ATIS based on varying levels of geographic coverage of the traffic monitoring 

systems. We develop three strategies for the incremental deployment of traffic monitoring 

systems: rank ordered deployment based on travel time variability, randomly selected 

deployment, and rank ordered deployment based on effect. We assess user benefits from a 

prospective ATIS service that incorporates real-time data where monitoring systems are 

deployed and incorporates historic data where no real-time monitoring systems exist. User 
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benefit is measured by using the disutility function based on Small et al. (6) as presented in 

Section 2. The disutility function translates the minutes of in-vehicle travel time as well as 

minutes of arrival offset, be it early or late, into a single monetary value. 

The strategies for deployment are applied to case studies of three cities: Washington DC, Los 

Angeles, and St. Paul/Minneapolis (hereafter referred to as the Twin Cities). Based on the 

analysis results from the three incremental deployment strategies, we make inferences on smart 

strategies for making deployment plans, and on how such a plan may vary based on regional 

roadway system characteristics such as the form (radial versus grid) of the regional network. 

Section 4.1 presents the hypotheses and limitations of this study while Section 4.2 explains the 

three incremental deployment strategies that are tested. Section 4.3 describes the three case study 

cities and why they were chosen for use in this analysis. Section 4.4 presents the outcomes of the 

three deployment schemes and Section 4.5 discusses the implications of these outcomes and 

directions for future study. 

4.1 Study Hypotheses 

The first hypothesis of this study is that more ATIS coverage always implies more benefit. That 

is, the marginal benefit from increased ATIS coverage will always be greater than zero. We will 

test this hypothesis by increasing the network coverage percentage and comparing the benefit for 

each level of coverage.  

The second hypothesis we examine is that the marginal benefit from increasing coverage will 

vary by urban network from. The three case studies are insufficient to conclusively test this; 

however, they can provide a first level comparison between grid and radial networks.  

Our third hypothesis is that incremental deployment plans based on observed roadway travel 

time variability are relatively efficient in garnering user benefits. One way of developing 

incremental deployment plans for ATIS is to consider observable current roadway segment 

characteristics such as annual average daily traffic (AADT), link speeds, or travel time 

variability. The first of the three deployment strategies evaluated is that of incremental 

deployment based on observed roadway travel time variability. This plan is most representative 
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of data that system designers are more likely to have at hand for the planning of ATIS 

incremental deployments. 

As a benchmark, we also consider a random deployment plan. This strategy is expected to be a 

relatively poor heuristic as ATIS instrumentation is applied randomly throughout the region. 

This is a simplistic plan that provides insight as to the outcome of strategies in the absence of any 

information beyond consideration of major roadways and roadway length. 

Identifying the optimal, or best, deployment plan is difficult given the enormous number of 

possible incremental deployments and limitations in the time to test a large array of options.  For 

example, a simple 10-link network where in an incremental deployment of 5 links is desired, 

results in 252 distinct deployment combinations. As the number of links increases, the number of 

possible incremental deployments increases exponentially.  The number of possible options for 

only the first 10% of network deployment for the cities of Los Angeles, Washington, DC, and 

Minneapolis/St. Paul ranges in the millions. 

In lieu of an optimal deployment plan, we instead identify a near-optimal benchmark for 

comparison. This strategy, named most-effective link ranked, is based on the evaluation of ATIS 

effectiveness in an experiment where each roadway segment is instrumented in isolation from 

the rest of the network. Based on this experiment, roadway links are rank-ordered for 

deployment from most to least effective. This plan, however, is not one that decision-makers 

could actually follow since it employs data that can only be generated from an existing ATIS. 

It is important to note that assessments in this study only consider a single trip from each origin 

to each destination for each time period. We do not weight these trips based on the actual 

regional demand pattern. As such, outcomes may be somewhat skewed compared to the actual 

sum of potential benefit to travelers in a region. The following section details the three 

incremental deployment strategies. 

4.2 Modeling Incremental Deployment Strategies 

Modeling ATIS provision under an incremental deployment plan is accomplished by classifying 

links into two disjoint groups. Links in the first group are covered by ATIS service 

(instrumented) and links in the other group not covered (uninstrumented). We apply the standard 
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HOWLATE methodology for both groups with the exception that for the uninstrumented group 

of links we use historic time-variant travel time data in the absence of real-time data. As such, in 

the case of zero network instrumentation, ATIS users have the same travel time information as 

ATIS non-users and their trip decisions (and therefore, their outcomes) are the same. 

To test ATIS coverage effects, we used three major incremental deployment strategies: (1) 

Travel Time Variability Ranked deployment, (2) Randomly Ranked deployment (RR), and (3) 

Most-Effective Link Ranked deployment (MELR). We consider network coverage levels ranging 

from 0% to 100% in increments of 10% for all incremental deployment strategies. Therefore, 11 

network coverage levels are analyzed for each deployment plan. The 10% increments are based 

on the percentage of regional roadway miles. Thus, each 10th percentile may have different 

numbers of links, but will have approximately the same number of roadway miles of coverage. 

4.2.1 Travel Time Variability Ranked Deployment 

This is the plan that most represents a likely analytical process by which regional planners might 

design deployments. In reality, other metrics such as link volume also play into deployment 

decisions; however only the link travel time and length metrics were available for use in this 

initial research. 

Link travel time variability is considered in three ways in this study: variability within a day, 

variability from day to day at a specific time, and variability across all days and times-of-day. In 

ranking links from highest to lowest variability, we use each of the three forms of variability. 

The ranked list of links associated with each form of variability is then apportioned into 10 bins 

with the first bin having links with greatest variability and constituting approximately 10% of 

regional network miles. The last bin will have links with lowest variability and the sum of miles 

of links in the bin will also constitute approximately 10% of regional network miles. Table 4-1 

lists the top ten links in Washington DC based on each of the three forms of variability. 

We generate incremental deployments starting with none of the bins of links instrumented for 

real-time travel time estimation (no real-time ATIS data), followed by the first bin of links being 

instrumented. Subsequent bins of links are then instrumented until all 10 bins, or 100% of the 

network is covered with sensors that report real-time travel times. No process for maintaining 

network connectivity within bins or from bin to bin is instituted. 
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Table 4-1 Ranking of Top Ten Links Based on the Three Forms of Variability for Washington 
DC 

1.  Connecticut Ave between DC 
Line and DC Mall/Garage

1. I-95 in VA between Dale City 
and Fairfax County Pkwy

1. Connecticut Ave between DC 
Line and DC Mall/Garage

2. Rt. 214 between DC 
Mall/Garage and DC Line 

2. Rt. 1 in VA between 14th Street 
Bridge and North Kings Hwy.

2. Rt. 214 between DC Line and 
DC Mall/Garage

3. Georgia Ave between DC Line 
and DC Mall/Garage

3. I-270N between I-495 and 
Gaithersburg

3. Georgia Ave between DC Line 
and DC Mall/Garage

4. New Hampshire Ave between 
DC Mall/Garage and DC Line 

4. Rt. 214 between DC 
Mall/Garage and DC Line 

4. New Hampshire Ave between 
DC Mall/Garage and DC Line 

5. I-95 in VA between Dale City 
and Fairfax County Pkwy

5. New Hampshire Ave between 
DC Line and DC Mall/Garage

5. New York Ave between DC Line 
and DC Mall/Garage

6. I-270S between Gairsburg and I-
495

6. I-95 in MD between Laurel and I-
495

6. Rt. 1 between DC Mall/Garage 
and DC Line 

7. Rt. 1 in VA between North 
Kings Hwy. and 14th Sreet Bridge

7. Connecticut Ave between DC 
Line and DC Mall/Garage

7. Pennsilvania Ave between DC 
Line and DC Mall/Garage

8. I-95 in MD between Laurel and I-
495

8. Georgia Ave between DC 
Mall/Garage and DC Line 

8. I-95 in VA between Fairfax 
County Pkwy (Rt. 7100) and Dale 

9. Rt. 7100/Fairfax County Pkwy 
between Springfield and Rt. 620

9. Suitland Pkwy between DC Line 
and I-495

9. I-270S between Gairsburg and I-
495

10. Rt. 50 in VA between DC Line 
and I-495

10. I-495W in VA between Rt. 1 
and I-95

10. Independence/Connecticut 
between DC Mall/Garage and DC 

Variability Within A Day Variability from Day to Day Variability Across All Days and 
Times of Day

Top Ten Links Ranked By Different Measures of Variability for Washington DC

 

4.2.2 Randomly Ranked Deployment 

In this strategy, we assume no information about the road network of the region beyond link 

length is available in the region where ATIS is to be instrumented. We generate a random 

number for each link and sort links by the random number order. We then bin links according to 

random order ensuring that the sum of miles of links in each bin is 10% of the total regional 

network miles. We generate incremental deployments starting with none of the bins of links 

instrumented for real-time travel time estimation (no real-time ATIS data), followed by the first 

bin of links being instrumented. Subsequent bins of links are then instrumented until all 10 bins, 

or 100% of the network is covered with sensors that report real-time travel times. To avoid bias 

by the random selection process, we generate 10 sets of random numbers and conduct binning 

and incremental deployment strategies with each set of random numbers. There is only one 

network scenario for 0% and 100% of network coverage. Therefore, 92 cases are analyzed for 

each city under randomly ranked incremental deployment strategy. As with the previous strategy, 

no process for maintaining network connectivity within bins or from bin to bin is instituted. 
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4.2.3 Most-Effective Link Ranked Deployment 

The three cities upon which we base the case studies are currently implemented with ATIS; thus, 

we can calculate the impact of real-time data transmission for each link in each city using 

HOWLATE. We do this by assigning that link to have ATIS instrumentation while all other are 

not instrumented. Then, for each link we can calculate the average dollar-valued disutility for the 

network assuming that only that one link is instrumented to deliver real-time data. The link 

having the least network dollar-valued disutility is the most effective in generating ATIS benefit, 

while the link with greatest network dollar-valued disutility is the least effective in generating 

ATIS benefit. We rank order links from least to greatest disutility, and as with the previous two 

strategies, bin the links so that the total miles of links in each bin are equivalent. We generate 

incremental deployments starting with none of the bins of links instrumented for real-time travel 

time estimation (no real-time ATIS data), followed by the first bin of links being instrumented. 

Subsequent bins of links are then instrumented until all 10 bins, or 100% of the network is 

covered with sensors that report real-time travel times. 

This incremental deployment strategy is not the optimal deployment plan, but we expect it to be 

the most effective incremental deployment plan among the three modeled. The disadvantage of 

this strategy is that it is an exercise in reverse engineering and such a methodology could not be 

performed without already having ATIS deployment. Therefore this strategy cannot be used by 

decision-makers during the planning stages of ATIS deployment.  

In addition, we develop two variants to this strategy to evaluate the impact of network 

connectivity: single link connectivity and bin group connectivity. These strategies are described 

in the following two subsections. They differ in that the first is a coverage extending from a 

starting link whereas the second is a coverage extending from multiple groups and joining in 

later bins. 

4.2.3.1 Single Link Connectivity  

In this strategy we rank the link with lowest disutility first. The link with lowest disutility among 

all links connected to the first-ranked link is ranked second. The link with lowest disutility 

among all links connected to either the first or second ranked link is ranked third. The link with 

lowest disutility among all links connected to either the first, second, or third ranked link is 
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ranked fourth. The ranking process continues until all links are ranked. Then the links are 

assigned to 10 bins according to ranking and maintaining equal link-miles across the ten bins. 

We generate incremental deployments starting with none of the bins of links instrumented for 

real-time travel time estimation (no real-time ATIS data), followed by the first bin of links being 

instrumented. Subsequent bins of links are then instrumented until all 10 bins, or 100% of the 

network is covered with sensors that report real-time travel times. 

4.2.3.2 Bin Group Connectivity  

In this strategy we preserve the 10 bins from the Most Effective Link Ranked Strategy but 

remove all disconnected links from the first bin into the second bin. We replenish the first bin by 

drawing links from the second bin with lowest disutility and connectivity to any of the links in 

the first bin. In the event that the second bin is not sufficient in replenishing the first bin, links 

from the third bin will be selected. The links replenishing the first bin should have lengths that 

sum approximately to the links expelled from the first bin. We then move to the second bin and 

perform the same process with removals and replenishments drawn from the lower bin or bins.  

4.3 Case Studies 

The three cities selected for conducting case studies include:  Washington DC, Twin Cities, and 

Los Angeles. These cities were chosen because of the availability of travel time data by link, 

time of day, and across many days. Both the Washington DC and the Twin Cities data are based 

on publicly available internet-based posting from SmarTraveler.com. The Los Angeles, CA data 

is based on loop detector data from PeMS website (http://pems.eecs.berkeley.edu). 

The Washington DC network consists of 33 unique roadway sections (18 freeways and 15 major 

arterials), with a total of 711.8 directed miles. As shown in Figure 4-1, the Washington DC 

roadway network is comprised of a beltway and freeway connected radially. Roadway sections 

are subdivided into 75 links that are on average 4.6 miles long. These links are connected by 55 

nodes. The average trip time across all trips simulated on this network is 32 minutes. 

 The Twin Cities network consists of 31 unique roadway sections (24 freeways and 7 major 

arterials). The coverage area encompasses 510 directional miles. Figure 4-2 shows the grid 

shaped roadway network of Twin Cities. Roadway sections are subdivided into 138 links that are 
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on average 3.7 miles long. These links are connected by 42 nodes. The average trip time across 

all trips simulated on this network is 32 minutes. 
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Figure 4-1  Map of Washington DC and conversion to Network 
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Figure 4-2  Map of Twin Cities and Conversion to Network 
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The roadway network of Los Angeles (Figure 4-3) is also grid shaped like Twin Cities, but 

consists of all freeways. The coverage area encompasses 734 directed miles. Roadway sections 

are subdivided into 61 links that are on average 11.9 miles long. These links are connected by 40 

nodes. The average trip time across all trips simulated on this network is 27 minutes. 
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Figure 4-3  Map of Los Angeles ATIS Network 

The training period for Los Angeles is comprised of 42 days from September 20, 2001 through 

December 19, 2001. The evaluation period is comprised of 100 days from January 10, 2002 

through July 1, 2002. For Twin Cities and Washington DC, the training period is comprised of 

39 and 33 days, respectively, while the evaluation period is comprised of 176 and 179 days, 

respectively. Training periods in both cities span from March through May 2000 while 

evaluation periods in both cities span from June 1, 2000 to May 31, 2001. 

4.4 Experimental Results   

A total of 2992 simulated ATIS deployment schemes were tested across the various deployment 

strategies. Table 4-2 presents the disutility value of ATIS users based on 0% and 100% ATIS 

deployment levels for the three cities. To note, 100% ATIS deployment in each city implies that 

all of the previously illustrated networks are instrumented with real-time ATIS, not that all roads 

in the region have ATIS instrumentation.  The potential for ATIS user benefit is greatest in Los 

Angeles followed by Washington DC and then Twin Cities. The following three sections 

demonstrate how the incremental deployment strategies affect the share of total potential ATIS 
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user benefit achievable at each level of deployment. Section 4.4 compares the three strategies 

and explores the relative importance of freeways versus arterials in deployment benefits. 

Table 4-2 ATIS Users’ Average Trip Disutility based on 0% and 100% ATIS Network Coverage  

Coverage Level Washington DC Twin Cities Los Angeles
Zero Coverage $2.67 $1.47 $2.84
100% Coverage $2.19 $1.24 $1.82  

4.4.1 Travel Time Variability Ranked Strategy Outcome 

The results of incremental ATIS deployments based on the travel time variability ranked strategy 

are represented in Figures 4-4, 4-5, and 4-6 for the cities of Washington DC, Twin Cities, and 

Los Angeles, respectively. Each figure presents the results of ranking based on each of the three 

forms of variability: variability within a day, variability from day to day at a specific time, and 

variability across all days and times-of-day.  ATIS users’ average trip disutility is represented in 

each figure by a bar that is associated with the left side y-axis. The percentage of benefit accrued 

by ATIS users at each level of incremental deployment compared to that of full deployment is 

represented by lines in each figure, and is associated with the right side y-axis.  

The percentage of benefit accrued by ATIS users at each level of incremental deployment 

compared to that of full deployment does vary based on the type of variability used to rank links. 

Yet, no one ranking based on a specific type of variability is consistently better than the others 

across all stages of incremental deployments. Across the three cities, rankings based on 

variability across all days and times of day proved slightly better compared to rankings based on 

the other two methods of variability. 

In Washington DC, 80% network deployment of ATIS produces 85% of the total benefit 

associated with 100% deployment. In Twin Cities 80% network deployment of ATIS produces 

96% of the total benefit associated with 100% deployment. And, in Los Angeles, 80% network 

deployment of ATIS produces 87% of the potential total benefit associated with 100% 

deployment. In general, the relationship between deployment percent and the percent of benefit 

compared with full deployment is relatively linear using the Travel Time Variability Ranked 

strategy. 
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Figure 4-4 Outcome of Incremental Deployment Strategy based on Travel Time Variability 
Ranked: Washington DC 
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Figure 4-5 Outcome of Incremental Deployment Strategy based on Travel Time Variability 
Ranked: Twin Cities, MN 
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Figure 4-6 Outcome of Incremental Deployment Strategy based on Travel Time Variability 
Ranked: Los Angeles, CA 

4.4.2 Randomly Ranked Deployment Strategy (RR) 

Figure 4-7, 4-8, and 4-9 present the average trip disutility of the ATIS users for various levels of 

incremental ATIS deployments based on the random deployment strategy in the cities of 

Washington DC, Twin Cities, and Los Angeles, respectively. At each level of coverage (with the 

exception of 0% and 100% coverage levels where there is only one possible scenario), there are 

ten points corresponding to the ten randomly ranked incremental deployment plans. The number 

in gray circle represents the worst strategy at each level of coverage and the number in white 

circle represents the best strategy. Graphs also show lines connecting subsequent points which 

are most frequently the best and the worst at each coverage level. 

No single randomly ranked incremental deployment in any city proved to be consistently best or 

worst for all levels of incremental deployment. Also, the spread of benefit across random trials is 

significant at all levels of deployment in each of the three cities.  Each randomly ranked 

deployment proves to be at times very good and at times very poor compared to the other nine 

random deployments at equivalent levels of ATIS deployment.  
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The general shape of benefits across incremental levels of ATIS deployment shows large 

disutility drops in Washington DC. The common links for the large disutility drops in 

Washington are parts of I-495, the Capital Beltway, the connector freeway for most of the 

regional trips. In comparison, Los Angeles and Twin Cities have a relatively linear relationship 

between deployment level and ATIS user benefits as a percent of benefit at 100% deployment. In 

contrast to our hypothesis, the best random strategies perform as well as or better than the travel 

time variability ranked deployment strategies. 

In Washington DC, 70% of total benefit is garnered by 30% of deployment across the 10 random 

trials; whereas in the travel time variability ranked deployments, only 44% of total benefit is 

garnered by 30% of deployment. In Twin cities, the values of benefit at the 30% deployment 

level are 45% and 40% for the average randomly ranked and travel time variability ranked 

strategies, respectively. Similar values of benefit at the 30% deployment level in Los Angeles are 

44% and 40% for the average randomly ranked and travel time variability ranked strategies, 

respectively.  
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Figure 4-7 Outcome of Incremental Deployment Strategy based on Randomly Ranked: 
Washington DC 
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Figure 4-8 Outcome of Incremental Deployment Strategy based on Randomly Ranked: Twin 
Cities, MN 
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Figure 4-9 Outcome of Incremental Deployment Strategy based on Randomly Ranked: Los 
Angeles, CA 



 

58 
 

4.4.3 Most Effective Link Ranked Strategy (MELR) 

In this strategy, we rank each link based on the average disutility of ATIS users’ trips associated 

with ATIS instrumentation only on that particular link. We generate incremental deployments 

starting with the link with lowest disutility first. Because some links are longer than others we 

graph link length by network disutility in Figure 4-10 to assess whether ranking is biased by 

longer links. If in fact disutility is significantly influenced by link length, then the graph would 

show some linear or other relationship. However, the absence of any meaningful trends leads us 

to conclude that longer links do not overwhelm the ranking of links by effectiveness in reducing 

network level disutility. 
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Figure 4-10 Average Disutility of ATIS Users’ Trips Based on Single Link Instrumentation 
Compared to Link Length 

The results of incremental ATIS deployments based on the most effective link ranked strategy 

are represented in Figures 4-11, 4-12, and 4-13 for the cities of Washington DC, Twin Cities, and 

Los Angeles, respectively. Each figure presents the results of ranking based on the basic most 

effective link ranked strategy and the two variants to this strategy –single link connectivity and 

bin group connectivity.  The average trip disutility of ATIS users is represented in each figure by 

a bar that is associated with the left side y-axis. The percentage of ATIS users’ benefit accrued at 
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each level of incremental deployment compared to that of full deployment is represented by lines 

in each figure, and is associated with the right side y-axis.  

Generally the original most effective link ranked strategy is slightly better than the two variants 

to this strategy, suggesting that connectivity may not be as important a factor in garnering user 

benefit compared to the link’s effectiveness in reducing ATIS users’ trip disutility. Of course, 

link connectivity would be an important factor in the marketing of the service to commuters. 

The overall shape of the relationship between ATIS deployment level and the ATIS users’ 

benefit as a percent of total achievable benefit at 100% deployment is not linear in any of the 

three cities. Based on the most effective link ranked benchmark, 93% of total benefit is garnered 

by 30% of deployment. In Twin Cities and Los Angeles the values of ATIS user benefit at the 

30% deployment level are 80% and 50%. In Washington DC and Twin Cities, links instrumented 

with ATIS after 70% of the most effective links in the network are instrumented contribute 

minimally to reducing disutility.  
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Figure 4-11 Outcome of Incremental Deployment Strategy based on Most Effective Link 
Ranked: Washington DC 
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Figure 4-12 Outcome of Incremental Deployment Strategy based on Most Effective Link 
Ranked: Twin Cities, MN 
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Figure 4-13 Outcome of Incremental Deployment Strategy based on Most Effective Link 
Ranked: Los Angeles, CA 
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4.4.4 Comparison of Strategies 

In this section we compare the travel time variability ranked strategy to the randomly and most 

effective link ranked deployment strategies using the metric of ATIS users’ benefit as a percent 

of benefit associated with 100% ATIS deployment. The travel time variability ranked strategy 

represents an analytical process by which regional planners might design a deployment, while 

the most effective link ranked strategy is our benchmark for near-optimal deployment. The 

randomly ranked strategy represents the worst case scenario for regional planners where no 

information is available in making incremental deployment decisions. We also explore the 

importance of freeways compared to arterials in generating ATIS user benefit, and how network 

form may play a role in how much benefit can potentially be garnered by early increments of 

ATIS deployment. 

Figures 4-14, 4-15, and 4-16 present the travel time variability strategy, the average of the 10 

randomly ranked strategies, and the original most effective link ranked strategy for each of the 

three cities, respectively. The ATIS users’ benefit accrued at each level of incremental 

deployment as a percent of benefit associated with full deployment is represented by the y-axis, 

while the level of ATIS deployment is represented by the x-axis in each of the three figures. 
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Figure 4-14 Outcomes of All Three Deployment Strategies in Washington DC 
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Figure 4-15 Outcomes of All Three Deployment Strategies in Twin Cities, MN 
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Figure 4-16 Outcomes of All Three Deployment Strategies in Los Angeles, CA 



 

63 
 

Most surprisingly, in Washington DC the travel time variability ranked strategy proves 

significantly worse than the randomly ranked strategy. Upon further investigation we find that 

the strategy based solely on link travel time variability ranks and deploys arterial facilities above 

freeways and consequently garners minimal benefit during the earlier increments of ATIS 

deployment. This is because although arterial have greater variability, freeways are used by far 

more trips in the Washington DC network. Figure 4-17 presents the 10%, 20%, and 30% 

deployments of ATIS for the three strategies. 

The near-optimal strategy in Washington DC deploys the Capital beltway (I-495) first, followed 

by other major freeway facilities. The beltway accounts for 18% of the regional network, yet 

instrumentation of this 18% garners 80% of benefit associated with 100% regional ATIS 

instrumentation. In comparison, a 20% deployment level based on the average random strategy 

and the travel time variability strategy garner only 65% and 36% of benefit associated with 

100% regional ATIS instrumentation, respectively. To note, in Washington DC, instrumentation 

only on freeways yields 95% of benefit compared with full deployment while freeways account 

for 67% of network miles. In contrast, instrumentation only on the arterials in Washington DC, 

comprising 33% of network miles, generates only 2% of benefit compared with full deployment. 

In Twin Cities, a 20% deployment based on the near-optimal strategy garners 69% of benefit 

associated with 100% regional ATIS instrumentation. In comparison, a 20% deployment level 

based on the average random strategy and the travel time variability strategy in Twin Cities 

garners only 31% and 24% of benefit associated with 100% regional ATIS instrumentation, 

respectively. 

As with Washington DC, the near-optimal deployment in Twin Cities focuses first on the major 

freeways followed by arterial deployment. And, as with Washington DC, the travel time 

variability ranked strategy results in arterial deployment before freeways. But in the case of Twin 

Cities, the travel time variability ranked strategy performs about at par with the randomly ranked 

strategy. This is likely because the Twin Cities network is grid shaped and has fewer arterial 

roadways. Consequently ATIS instrumentation on a random few freeways does not get the same 

effect as in Washington DC where I-495 pushed the randomly ranked strategy above the travel 

time variability ranked strategy.
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Unlike Washington DC and Twin Cities, the Los Angeles near-optimal deployment is less 

dramatically curved. A 20% deployment based on the near-optimal strategy garners 30% of 

benefit associated with 100% regional ATIS instrumentation. In comparison, a 20% deployment 

level based on the average random strategy and the travel time variability strategy in Los 

Angeles garners only 18% and 15% of benefit associated with 100% regional ATIS 

instrumentation, respectively. Because the Los Angeles network is all freeways, and is grid-

shaped, links here have relatively similar importance compared to the other two cities.  

4.5 Key Findings and Conclusions 

This study analyzes how trip disutility is reduced for users of ATIS at various levels of ATIS 

deployment under three different incremental deployment strategies. We used case studies of 

three metropolitan areas: Washington DC, Los Angeles, and Twin Cities. In this section, we 

summarize the key findings from this study with respect to our initial hypotheses.  

The hypothesis that more coverage always implies more benefit was not found to be true in 

Washington DC and Twin Cities. Links added after a near-optimal ATIS instrumentation on 70% 

of the network proved no benefit to ATIS users. This is likely due to the fact that variability on 

those links is less than the error inherent with the ATIS information. Therefore, instrumentation 

on such links does not benefit ATIS users traversing such links. However, the hypothesis of 

more coverage yielding more benefit was found to be true based on the randomly and travel time 

variability ranked strategies. 

The hypothesis that the urban network form impacts the magnitude of benefit generated at lower 

levels of ATIS deployment proved accurate. Washington DC a radial network proved under the 

near-optimal strategy to garner 80% of the benefit associated with 100% ATIS deployment with 

only approximately 20% of the network deployed. In contrast, the cities of Los Angeles and 

Twin Cities, under the near-optimal deployment strategy, at a 20% ATIS deployment level 

garner only 69% and 30% of the benefit associated with 100% ATIS deployment, respectively.  

The travel time variability ranked strategy proved far less effective than the average randomly 

ranked strategy in Washington DC, and only as effective as the average randomly ranked 

strategy in Twin Cities and Los Angeles. The key shortcoming of this strategy may be related to 
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the fact that arterials generally have greater variability than freeways, while freeways are used 

for many more trips than arterials. Based on the cities of Washington DC and Twin Cities, we 

observed that ATIS instrumentation on freeway facilities provides generally higher ATIS user 

benefit compared to instrumentation on arterial facilities. 

In summary, the shape of the deployment-benefit relationship depends foremost on the ambient 

congestion level in network, followed by the form of the urban network (radial vs. grid), and 

finally the level of roadway variability in comparison to the accuracy of the ATIS. 

4.6 Future Work 

Thus far, we evaluated three incremental deployment strategies: travel time variability ranked, 

randomly ranked, and most effective link ranked. Of these, the most effective link ranked 

strategy serves as a benchmark for near-optimal deployment, while the randomly ranked strategy 

serves as the scenario of incremental deployment based on little a priori information about the 

network. The travel time variability ranked strategy most represented a likely analytical process 

by which regional planners might design deployments. In the future, we will focus on the 

development and evaluation of more savvy deployment strategies based on observable data that a 

planner could use. Some metrics we plan to consider in developing deployment strategies include 

speed, incident rates, and annual average daily traffic. In continuing further, we also plan to look 

at weighing trip outcomes based on observable regional demand patterns. 
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5 KEY FINDING AND FUTURE WORK 

In this section, we revisit the hypotheses of the study first presented in Section 1.3. In Section 5.1 

we provide a summary of key findings from across the three areas of research exploring ATIS 

user benefits: ATIS accuracy, ATIS incremental deployment, and limited data sets. 

5.1 Hypotheses and Key Findings 

  
Hypotheses Regarding ATIS Accuracy:  There exists a unique value level of error, called the 

crossover point of error, where ATIS provides positive travel reliability benefits on aggregate for 

a region. The crossover point of error is higher for cities with higher day-to-day variability, and 

similarly is higher during peak periods for a city given that day-to-day variability is greater 

during periods of greater congestion. Further, it is likely that cities currently providing ATIS are 

at or above their crossover points of error. 

Findings: Crossover points of error were found in the three cities examined in this study: St. 

Paul/Minneapolis, MN; Washington, DC; and Los Angeles, CA. Crossover point values range 

from 10% to 21% based on city and time of day. For ATIS services beyond these levels of 

accuracy, only certain subsets of the driving populations such as those with relatively long or 

highly variable trips may realize benefit. Conversely, the marginal benefit from ATIS 

improvements decreases at higher levels of ATIS accuracy.  Figure 5-1 illustrates the 

relationship of utility from improved trip reliability versus travel time error for the Los Angeles 

region. In Los Angeles, the crossover point of error ranges from 14% to 21%. Once regional 

ATIS services reaches a level of accuracy in the range of 5%, benefits from improvements to 

ATIS accuracy may outweigh costs associated with such efforts. The curves for the cities of 

Washington, DC and St. Paul/Minneapolis have the same shape as that of Los Angeles. 

Figure 5-2 presents a graph of crossover error point by variability in link speeds, disaggregated 

by city and congestion period. St. Paul/Minneapolis and Washington DC, the cities with lower 

day-to-day speed variability have a significantly lower crossover points compared to Los 

Angeles, a city with greater speed variability. Thus, ATIS in the cities of Washington DC and St. 

Paul/Minneapolis need to be more accurate than in Los Angeles to achieve a net positive ATIS 
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user benefit across their regions. Also, the PM peak period for all cities tends to have greatest 

speed variability, and consequently highest thresholds for ATIS error. 

To note, the relationship between the crossover point of error and system-level travel speed 

variability can be shown to be linear with a R-square value of 0.92 and a slope of 1.55%. This 

suggests that as regional trip variability decreases by 1 minute, the system needs to increase 

accurate by 1.55% to maintain the same level of potential user travel time savings. 

With respect to the current level of accuracy of ATIS providers, we identified a limited number 

of corridor studies of ATIS accuracy for the cities of Washington DC, and St. Paul/Minneapolis. 

In Washington DC the error of ATIS excluding bias ranged from 9% to 17% for freeways and 

6% to 26% for arterials (Hardy et al., 7) compared to the crossover point of error ranges 

identified in this report between 9% and 14%.  In St. Paul/Minneapolis the error of ATIS 

excluding bias ranged from 24% to 33% depending or peak versus off-peak periods (Cambridge 

Systematics, 8; Toppen et al., 9). This report identifies the crossover point of error to range 

between 10% and 15%. These ranges of current accuracy are illustrated in Figure 5-2. Based on 

these limited efforts measuring ATIS accuracy, clearly the St. Paul/Minneapolis ATIS is beyond 

the point at which the net user trip reliability impact of ATIS would be positive. For Washington, 

the ranges of ATIS error and crossover point overlap, leaving the status of regional benefit from 

ATIS use ambiguous.  
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Figure 5-1 Los Angeles Network Utility Curve by ATIS Error Level 
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Crossover Point of Error =  0.0155 x (Avg. Stdev. In Link Speed) + 0.0471

R2 = 0.9234
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Figure 5-2 Error Crossover Point by Average Network Link Speed Variability 
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Studies on the accuracy of travel measurement devices indicate accuracy levels ranging from 8% 

to 17%. These are the base levels of error generally associated with point estimates of speed. 

Error in ATIS provision is further introduced going from point speeds to link speed or link 

travel-time, and further from data ageing between measurement and information dissemination. 

Based on these factors and the range of crossover error points calculated between 9% and 21% 

we expect that cities are likely at or above the level where ATIS proves a net benefit to users in 

the region aiming for improved on-time reliability. 

 
Hypotheses Regarding Incremental Geographic Deployment:  For near-optimal incremental 

deployment strategies of ATIS, an overwhelming percentage of the benefit associated with full 

deployment can be achieved through efficient deployment of travel time surveillance over a 

relatively limited set of a few key roadway segments. Incremental deployment strategies based 

on the observable roadway condition, link travel time variability, will be relatively closer to near-

optimal efficiency compared to a random deployment strategy. The geometric form of the 

regional roadway network will affect the magnitude of benefit achieved by the first few levels in 

an incremental deployment strategy. More deployment always implies more benefit. 

 

Findings: The most effective link ranked strategy, offered as a benchmark for near-optimal 

incremental deployment, generate deployment plans wherein 30% of network miles deployed 

account for as much as 93%, 80%, and 56% of the benefit in terms of trip disutility reductions 

in the cities of Washington DC, St. Paul/Minneapolis, and Los Angeles, respectively. However 

implementing this strategy would require an experiment in which each portion of the network is 

instrumented individually and the efficiency of the network is evaluated based on that individual 

instrumentation. The findings from these individual instrumentations and network evaluations 

form the basis upon which to rank links in the most effective link ranked strategy. 

Figure 5-3 presents the percent of total benefit garnered by percent of roadway miles covered 

using the most effective link ranked strategy. As demonstrated from the evaluations, ATIS real-

time coverage on key facilities in the region has the potential to generate the majority of ATIS 

user benefits associated with full deployment.  
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Figure 5-3 Percentage of Full Deployment Benefit by Deployment Levels 

 

We then explored incremental deployment strategies based on observable data. Deployments 

based solely on the criterion of link travel time variability proved no better and sometimes even 

less efficient the randomly selected link deployment strategy, and in all cases far less efficient 

than the most effective link ranked strategy. Incremental deployments based on the random link 

selection strategy were on average 68% to 76% as efficient as our near-optimal benchmark 

across the three cities. In contrast, incremental deployments based on the travel time variability 

ranked strategy were on average 57% to 75% as efficient as the near-optimal strategy across the 

three cities. Table 5-1 presents the relative efficiency of the travel time variability strategy and 

the random strategy compared to the near-optimal strategy of most effective link first. 

For Washington DC, this outcome can be explained by the travel time variability strategy 

choosing arterial deployments before freeway deployments (Table 5-2). This is because arterial 

links tend to have greater variability compared to freeway links. Yet, freeways far more likely to 
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be utilized for network-wide travel. It may be that an incremental deployment strategy of 

instrumenting freeways with high variability first may return patterns more similar to the near-

optimal benchmark illustrated in Table 5-2.   

Table 5-1 Efficiency of Random and Travel Time Variability Strategy compared to the Near-
Optimal Benchmark 

STRATEGY Washington, DC Twin Cities Los Angeles
Most Effective Link Ranked 

Travel Time Variability Ranked 57.2% 73.7% 74.8%
Average of 10 Randomly Ranked 68.1% 67.7% 75.6%

Best of 10 Randomly Ranked 85.7% 77.7% 87.7%
Worst of 10 Randomly Ranked 42.7% 57.9% 62.9%

 Set to 100% Effectiveness

 

 

Table 5-2 Washington Roadway Segments for the 10%, 20%, and 30% Level Deployments 
based on Most Effective Link and Link Travel Time Variability Strategies 

Mileage Roadway Name Mileage Roadway Name
6.4 Connecticut Ave between DC Line and DC Mall/Garage 16.0 I-495 in MD between Clara Barandn Hwy. andI-95
5.1 Rt. 214 between DC Line and DC Mall/Garage 6.7 I-495 in VA between Rt. 1 and I-95
6.6 Georgia Ave between DC Line and DC Mall/Garage 7.6 I-495 in MD between Rt. 50 and Rt. 4
5.2 New Hampshire Ave between DC Line and DC Mall/Garage 5.5 I-495 in MD between Rt. 5 and Rt. 210
4.1 New York Ave between DC Line and DC Mall/Garage
4.0 Rt. 1between DC Line and DC Mall/Garage
3.8 Pennsilvania Ave between DC Line and DC Mall/Garage

Total Mileage = 35.2 miles Total Mileage =35.8 miles
12.7 I-95 in VA between Dale City and Fairfax County Pkwy 6.0 I-66 between Rt. 50 I-495
9.1 I-270 between Gairsburg and I-495 7.9 I-495 in MD between I-95 and Rt. 50
3.0 Independence/Connecticut between DC Mall/Garage and DC Line 3.4 I-495 in MD between Rt. 4 and Rt. 5
5.6 Rt. 1 in VA between North Kings Hwy. and 14th Sreet Bridge 12.7 I-95 in VA between Dale City and Fairfax County Pkwy
7.4 I-495 in MD between Clara Barandn Hwy. and I-270 6.5 I-495 in VA between I-95 and Rt. 50

Total Mileage = 37.8 miles Total Mileage =36.5 miles
9.3 Rt. 50 in VA between I-495 and DC Line 7.0 I-495 in VA between Rt. 66 and G.W. Pkwy
6.9 Shirley Hwy. (I-395N) between Rt. 236 and 14th St. Bridge 9.1 I-270 between I-495 and Gaithersburg
2.2 I-395 between DC Line and DC Mall/Garage 2.0 I-495 in MD between Rt. 210 and Rt. 1 
6.7 I-495 in VA between I-95 and Rt. 1 2.9 I-66 between Fairfax County Pkwy and Rt. 50
8.9 VA 620/Braddock Rd. between Fairfax County Pkwy and I-495 7.8 I-66 between Rt. 267 and Roosevelt Bridge

5.3 Anacostia Fwy. (I-295) between Suitland Pkwy and Rt. 50
Total Mileage =34.0 miles Total Mileage =34.1 miles

*Roadways in bold are freeway facilites
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In Los Angeles, regional network is that of freeways only. Here, as in DC, our hypothesis about 

the effectiveness of incremental plans based on link travel time variability is not supported. The 

incremental deployment based on link travel time variability performs as well as the average of 

10 random deployments. The poor performance of this strategy compared to a random 
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deployment may be attributed to the fact that the demand pattern weights trips from each origin 

to each destination equally.  We expect in reality that the freeway sections with greatest 

variability will be those most used and that weighting trips by demand will prove that 

incremental deployments based on travel-time variability will be more efficient than random 

deployments. We will investigate these and other incremental deployment strategies in future 

work. 

The first 10%, 20%, and 30% levels of incremental deployment based on the near-optimal 

strategy in Washington DC, a region with radial roadway network of freeways and arterials, 

garner 73%, 87%, and 93% of benefit, respectively, compared to a full deployment in that 

region. In Twin Cities, a region with a grid network of freeways and arterials, the first 10%, 

20%, and 30% levels garner 69%, 81%, and 88%, respectively.  The same levels of deployment 

in Los Angeles, also a grid network but only of freeway facilities, garner 30%, 47%, and 55% of 

benefit. The outcomes in the three cities support the hypothesis that concentration of ATIS 

user benefits depends on the network form. 

Finally, as illustrated in Figure 5-3 for the near-optimal strategy, deployments beyond the first 

most effective 7-% of the networks in Washington DC and Twin Cities, generated no benefit. 

This is because the accuracy of the ATIS was not high enough compared to the variability of 

links instrumented to make ATIS useful or beneficial. In Los Angeles, however, the hypothesis 

that more deployment means more benefit holds true.  

5.2 Implications 

In making effective tradeoff decisions about how to invest in improved ATIS—be it increasing 

geographic coverage or increasing accuracy, the findings of this report underscore the 

importance of understanding what levels of accuracy are required to generate ATIS user benefit 

based on regional day-to-day roadway variability.  Figure 5-4 presents a notional nomograph 

based on the findings of this report that may assist decision-makers in planning cost effective 

investments in ATIS deployments. ATIS services with information accuracy and coverage levels 

landing them in the “don’t deploy” area should focus on improving accuracy. Conversely, ATIS 

services landing in the “add coverage” area have sufficiently accurate information and should 

focus on increasing ATIS deployment. The ideal for regional ATIS is in the “stand pat” region 
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where both geographic coverage and accuracy of the ATIS service is at a level where the 

marginal benefits from improvements do not warrant the cost of such improvements. 
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Figure 5-4 Notional Nomograph of Potential Decision Making Regimes 

Public sector investment in ATIS is predicated on the expectation of mobility and productivity 

benefits to both users of ATIS and the transportation system. For aggregate user benefits to be 

realized, the ATIS service must perform at or above a specific level of accuracy, or conversely, 

provide information below a certain level of error. Thus, the first step toward efficient ATIS 

investment decision-making for regions with existing ATIS is to evaluate the accuracy of the 

current ATIS system.  

For regions with existing ATIS as well as for regions in the planning stages of ATIS, decision-

makers also need to assess how accurate their ATIS needs to be to generate positive user benefit 

in their region. The crossover point of error, the value below which ATIS yields a net regional 

benefit, ranged from 10% to 21% based on the three cities evaluated in this report. More 

importantly, the crossover point of error proved to be highly linearly related to the day-to-day 

roadway variability of the region. Thus, ATIS planners can use measured roadway variability to 

gauge how accurate ATIS in their region needs to be to garner user benefit.  
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Across the three cities we found that once ATIS error is reduced to a 5% level, benefits from 

improvements in accuracy are minimal. Having an understanding of the range within which a 

region’s ATIS level of error is acceptable may have significant implications in identifying the 

types of sensor technologies selected for deployment. For example, in Los Angeles where the 

crossover point of error ranges from 14% to 21%, detectors using certain technologies with an 

error range around 12% may be most cost effective. Those same detectors may not be adequate 

in Washington DC where the crossover point of error ranges from 9% to 14%. The key finding is 

that if the regional variability is relatively low, the accuracy of ATIS to realize regional user 

benefit must be relatively high. Conversely, if the regional variability is relatively high, ATIS 

accuracy to realize aggregate regional user benefits can be relatively lower. 

An equally important step toward efficient ATIS investment decision-making for regions is 

smart geographic deployment of ATIS coverage. We observed that near-optimal geographic 

deployments of ATIS can garner as much as 50% to 80% of benefits from as little as the first 

30% of deployment, yet identifying the near-optimal is not as straightforward as implementation 

on links with highest variability. Travel demand is expected to play a significant role in the 

deployment selection process as is facility type (eg. freeway versus arterial).  

Across the dozens of existing ATIS services, overwhelmingly, the level of error in the 

information they provide is poorly known. A review of literature on the accuracy of ATIS or 

speed/travel time sensor devices proved limited data on ATIS accuracy.  Based on these reviews 

and the notional nomograph (Figure 5-4) presented earlier in this section, we derive a nomograph 

(Figure 5-5) of the current state of ATIS in the United States and the direction ATIS decision-

makers should strive toward. Our findings from this study suggest that the initial focus should be 

on accuracy, followed by an expansion of geographic deployment. 
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Figure 5-5 Suggested Direction for ATIS Investment 

5.3 Conclusions and Next Steps 

By extending the HOWLATE methodology, we successfully evaluated how ATIS user benefits 

of on-time reliability and travel time vary by ATIS accuracy and deployment coverage. The 

implications for field managers considering ATIS investment strategies, based on the findings 

from case studies in the cities of Los Angeles, Washington DC, and Minneapolis/St. Paul are 

noteworthy. Implications for decision makers in regions with existing ATIS are: 

•  Before considering further ATIS investments, first gain an understanding of the accuracy 

of your current posted travel time information and of the day-to-day variability of travel 

on roadways instrumented with ATIS. 

•  If the accuracy of the existing service is poor in relation to day-to-day travel variability, 

focus investment into improving accuracy. The variability-accuracy relationship is 

demonstrated in Figure ES-2. 

•  Once system accuracy is relatively good in relation to day-to-day travel time variability, 

then, focus on increasing ATIS coverage(Figure ES-4). 
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•  Keep in mind that more deployment does not always mean more benefit. There exists an 

end-state wherein deployment on roadways may not generate additional benefit to users 

of the ATIS. 

For decision makers in regions considering ATIS: 

•  First identify the day-to-day variability of travel on major regional roadways. 

•  Select technologies and data processing techniques with a level of accuracy that is 

appropriate considering the magnitude of variability in your region. 

•  A good deployment plan can generate significant benefit from minimal investment. 

Identifying such a plan is difficult if only limited data is available. Deployments of ATIS 

based on both travel demand and roadway variability data are likely to be a good start in 

developing an efficient deployment plan. 

Case studies in the three cities identified that for ATIS to generate user benefits of on-time 

reliability, the level of error in information delivered by ATIS needs to meet a minimum range of 

10% to 21%. Further, regions with greater day-to-day roadway variability can generate ATIS 

user benefits at higher levels of error in ATIS information compared to regions with lesser day-

to-day roadway variability.  We also confirmed that near-optimal, incremental ATIS geographic 

deployment plans can garner as much 50% to 80% of benefit associated with full deployment 

with as little as 20% to 30% of the full geographic deployment.  

Based on these findings, we have presented notional nomographs aimed at assisting ATIS 

decision-makers in developing effective investment strategies that provide the highest possible 

value of service to their constituencies. In future work, we expect to expand on these 

nomographs to deliver decision-makers more detailed graphs that identify efficient directions for 

investment based on their specific situation. In expanding the notional nomograph, we also 

expect to expand on the various accessible metrics upon which to base incremental geographic 

deployments of ATIS.  In this report, we evaluated deployments based solely on travel time 

variability. In future work we hope to consider other factors such as annual average daily traffic, 

travel demand, or other metrics readily available to transportation planners.
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APPENDIX A: Revised HOWLATE Algorithmic Statement 

HEURISTIC ON-LINE WEB-LINKED ARRIVAL TIME ESTIMATOR (HOWLATE) 

Overview 

Step 1. Expectation During Training Period 
 
Step 2. Optimal Paths and Travel Times in Evaluation Period 
 
Step 3. Determine Performance of Non-Users in Evaluation Period 
 
Step 4. Determine Performance of ATIS Users in Evaluation Period 
 OPTION 1:  Pre-Trip Time Shift with Pre-Trip Route Choice  
 OPTION 2:  Pre-Trip Time Shift with En Route Path Choice  
 
A. Forward A-STAR Dynamic Program: ′D  
 
B. Reverse Time Dynamic Program: `D  
 
C. Forward Path Traversal Under Estimated Travel Times: ( )( )′T , $L lc t  
 
D. Forward Path Traversal Under Actual Travel Times: ( )( )′T ,L

)
lc t  

 
E. Evaluating Arc Costs Between Lattice Points 
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Step 1.  Expectation-Setting Under Training Period 
 
Network Structure File: 
 
For each link l ∈ L , the network of directed arcs: 

( )l: ,a b  link l  defined as unidirectional arc from node a  to node b  
fl    facility type (currently arterial or freeway) 

ξl    congestion threshold time (seconds) 

δl    distance along link (miles) 
 
Archived Daily Link Travel Time Files, Training Period 
 
For each day k N= 1 2 3, , L  in the training period of N days, one file containing: 
 For each link l ∈ L , and 5-minute time slice day k t T: , ,= 0 1 2L ; 

( )$c tk
l  archived link travel time for link l  for arc traversal beginning at time t , day k  

 
Monte Carlo Parameters from Control Parameter File: 

µκ
f  offset for link travel time value by facility type and congestion 

σ κ
f  standard deviation of link travel time value by facility type and congestion 

 
Experimental Control Parameters: 

φ  yoked trial toggle.  Set = 1 if this is a yoked trial between ATIS users and  
 habitual travelers who are FAMILIAR with congestion conditions; 
 Set = 0 if this is a yoked trial between UNFAMILIAR subjects. 
χ  FAMILIAR parameter:  subject on-time arrival requirement (scaredy/macho factor) 

 ρ  UNFAMILIAR parameter:  estimated peak period travel time premium 
  for DC, use TTI mobility index: 1.41. 
 pT  UNFAMILIAR parameter:  set of time intervals designated as “peak” period 
  for DC, use:  7:00-9:30 AM, 3:30-6:00 PM. 
 
PROCEDURE: 
 
1. Monte Carlo sampling to produce actual travel times in each day of the training period ( ))

lc tk : 

a. compute congestion factor based on l, t : 

 
( )
( )κ

ξ
ξ

=
>
≤





1
0

$

$

c t
c t

k

k
l l

l l

 

 
b. compute estimates based on link characteristics, time of arc traversal, and adjustment factors: 

 ( ) ( ) ( )( ))
ll lc t t c tk k

f f= = −M , NORMAL $ ,µ σκ κ  

 
c. enforce consistency in actual travel time profiles, enforcing FIFO for arc costs in time: 
 if ( ) ( )) )

l lc t c tk k− + >1 300  then set ( ) ( )) )
l lc t c tk k+ = −1 300 . 

 
d. if 1=φ  then proceed to substep 2 to compute FAMILIAR training, else proceed to substep 5.  
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2. FAMILIAR TRAINING 
 
 Generate profile of average experienced conditions during training period ( ))

lc t : 
 

   ( )
( )

)

)

l

l

c t
c t

N

k

k=
∑

 

 
3. For each destination node d and target arrival-at-destination time τ , 
 where τ τ: , ,1 2 3LT , a lattice of 15 minute target arrival times during the day, 

 perform DP recursively from d at time τ using average arc costs to find: 
 

 ( )`D , , ( ) , ,d c t o dτ τ
)
l → P  , the habitual path established for o d, ,τ and 

    po d, ,τ
1 , the expected travel time for this path (1st estimate) 

    ′ = −t po dτ τ, ,
1  

 
4. For each day k in the training period; for each o d, ,τ  : 

 a. traverse Po d, ,τ forward at time t ′  using training day k arc costs: 
 
 ( )→′′ )(,,T ,, tct k

do l
)

τP  po d
k
, ,τ , the travel time on the habituated path  

 

 b. from the vector series { }p k No d
k
, , : , ,τ = 1 2 L , compute po d, ,τ , the average path travel time and 

  σ τo d, ,
P , the standard deviation of the series of days of travel on the habitual path 

 
 c. compute the habituated time of trip start,  t o do d, , , ,τ τ0 ∀ : 

  ( )P
τχττ στ ,,,,

0
,, dododo Zpt +−= , where χZ is the Z-statistic for χ %, normal dist. 

  Note: to d, ,τ
0  cannot take values between lattice points, so to d, ,τ

0  should be marked down to the 

previous five minute interval point, i.e.,  set t t REM
t

o d o d
o d

, , , ,
, ,

τ τ
τ0 0

0

= −










∆
, where REM() is the 

remainder after integer division. 
 

 d. compute the average travel distance on the habitual path δ δτ
τ

o d
Po d

, ,
, ,

=
∈
∑ l

l

. 

 e. identify the savvy ATIS user correction factor, ω τo d, , .and the uncertainty associated with the ATIS-

estimated travel time, P
τσ ,,ˆ do . 

  traverse Po d, ,τ forward with ATIS-estimated arc costs fixed at time t ′ : 
 

  ( )′ ′ ′ →T , , $ ( ), ,Po d
kt c tτ l  $ , ,po d

k
τ , the pre-trip estimate of travel time on the habituated path. 
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  Let  

∑
=

k

k
do

do
do

p
N

p

τ

τ
τω

,,

,,
,,

ˆ1
, the ratio of experienced to predicted travel times in the period. 

  Let  ( )∑ ⋅−
−

=
k

do
k

do
k

dodo pp
N

2
,,,,,,,, ˆ

1
1ˆ ττττ ωσ P , the uncertainty associated with the ATIS-

estimated travel time. 
 f.  let 0

,, τdott =′ . Repeat steps 4a, 4b and 4e ONCE. 
5. Skip forward to Step 2., Optimal Paths in Evaluation Period. 
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6. UNFAMILIAR TRAINING 
 
 Generate profile of roadway congestion estimated by unfamiliar travelers, ( )tcl~ : 
 

   ( ) ( )
( )




∉
∈

= p

p

tc
tc

tc
T
T

0
0~

l

l
l )

)ρ
 

 
7. For each destination node d and target arrival-at-destination time τ , 
 where τ τ: , ,1 2 3LT , a lattice of 15 minute target arrival times during the day, 

 perform DP recursively from d at time τ using average arc costs to find: 
 
 ( ) ττ ,,)(~,,D` dotcd P→l  , the habitual path established for o d, ,τ and 

    τ,,dop , the expected travel time for this path  

8.    Compute the habituated time of trip start, t o do d, , , ,τ τ0 ∀ : 

  ττ τ ,,
0

,, dodo pt −= , 

  Note: to d, ,τ
0  cannot take values between lattice points, so to d, ,τ

0  should be marked down to the 

previous five minute interval point, i.e., set t t REM
t

o d o d
o d

, , , ,
, ,

τ τ
τ0 0

0

= −










∆
, where REM() is the 

remainder after integer division. 
 
9.  Set ω ττo d o d, , , ,= ∀1 . 
  Skip forward to Step 2, Optimal Paths and Travel Times.  



 

A-6 
 

Step 2. Optimal Paths and Travel Times in Evaluation Period 
 
NEW INPUT FILES: 
 
Archived Daily Link Travel Time Files, Evaluation Period 
 
For each day j M= 1 2 3, , L  in the evaluation period of M days, one file containing: 
 For each link l ∈ L , and observed 5-minute time slice in day j t T: , ,= 0 1 2L ; 

( )$c tj
l  archived link travel time for link l  for arc traversal beginning at time t , day j  

 
PROCEDURE: 
 
1. Monte Carlo sampling to produce actual travel times in each day of the evaluation period ( ))

lc tj : 

For each l ∈ ∈L t T, : 
 a. compute congestion factor based on l, t as in Step 1.1. 

 b. compute estimates based on link characteristics, time of arc traversal, and adjustment factors: 

 ( ) ( ) ( )( ))
ll lc t t c tj j

f f= = −M , NORMAL $ ,µ σκ κ  

   c. enforce consistency in actual travel time profiles, enforcing FIFO for arc costs in time: 
  if ( ) ( )) )

l lc t c tj j− + >1 300  then set ( ) ( )) )
l lc t c tj j+ = −1 300 . 

 
2. Find fastest paths based on actual data from the evaluation period: 
  
 For each destination node d , target arrival time of τ , and day j : 
 
  a. perform DP recursively for d j, ,τ under actual evaluation period conditions to establish: 
 

  ( )`D , , ( )d c tjτ )
l →  

)
Po d

j
, ,τ , the optimal path on day j for the o d, ,τ ; and 

   
)po d

j
, ,τ , the travel time on 

)
Po d

j
, ,τ . 

  b. find path distance on the optimal route as 
)

l

l
)

δ δτ
τ

o d
j

o d
j

, ,
, ,

=
∈
∑
P

.     
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Step 3. Determine Performance of Non-Users in Evaluation Period 
 
NEW INPUT FILES: 
 
None. 
 
PROCEDURE: 
 
1. recover habituated paths and trip start times from Step 1, Po d, ,τ and t o do d, , , ,τ τ0 ∀  
 
2. For each day j  in the evaluation period, for each o d, ,τ : 
 
 a. traverse Po d, ,τ forward from time to d, ,τ

0 , using actual arc costs for day j : 

 ( )′ →T , , ( ), , , ,Po d o d
jt c tτ τ

0 )
l  

)
po d

j
, ,τ , actual experienced travel time on the habituated path  
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Step 4. Determine Performance of ATIS Users in Evaluation Period 
 

OPTION 1:  Pre-Trip ATIS, Concurrent Time-Shift and Route Choice  
 
NEW INPUTS: 
 
From Control File: 
 
 e+   Maximum late departure, expressed in multiples of 300 seconds 
 e−   Maximum early departure, expressed in multiples of 300 seconds 
 ε   Route diversion indifference threshold 
 
PROCEDURE: 
 
1.  Recover archived and actual link travel time files for the evaluation period. 
 
2. For each o d, ,τ : 

 a. set ′ = − −t t eo d, ,τ
0 . 

 b.  perform forward DP from ′t  with arc costs fixed at t t= ′ ; 

  ( )( )′ ′ ′ →D , , , $o d t c tj
l  & , ,Po d

j
τ , a candidate fastest path with predicted travel time & , ,po d

j
τ  

 
 c. check to see if trip start can be safely postponed five minutes longer 
  CHECK#1: )ˆ( ,,,,,,

P
τχττ στω do

j
dodo Zpt +∆−<+′ &  (predicted to be early?) 

  CHECK#2: ′ < + +t t eo d, ,τ
0  (still have flexibility to postpone trip?) 

  If CHECK#1 and CHECK#2 are true, 
   then set ′ = ′ +t t ∆  and GOTO step b; 
  Otherwise we have determined the time of trip start, set ~, ,t to d t

j = ′ . 
 d.  Check if candidate path is the habitual path; 
  If & , , , ,P Po d

j
o dτ τ= , set $ &, , , ,p po d

j
o d
j

τ τ= and GOTO step h. 

 e. forward traverse the habitual path, Po d, ,τ  , using arc costs fixed at ~
, ,to d
j

τ ; 

  ( )( )′ →T , ~ , $ ~
, , , , , ,Po d o d

j j
o d

jt c tτ τ τl  $ , ,po d
j

τ , the predicted travel time on the habitual path. 

 f. perform check to see if the alternative route is attractive enough to warrant diversion 
  CHECK#3: $ &, , , ,p po d

j
o d
j

τ τ ε− >  
  If CHECK #3 is false, then GOTO step h. 
   
 g. SWITCH to the alternative path: 
  Traverse & , ,Po d

j
τ  forward from time, using actual arc costs for day j , departing at ~, ,to d t

j : 

  ( )′ →T & , ~ , ( ), , , ,Po d
j

o d
j jt c tτ τ

)
l

~
, ,po d
j

τ , experienced travel time for the ATIS user. 

  Set pre-trip switch indicator xo d
j
, ,τ = 1, and trip distance

~
, ,

&
, ,

δ δτ
τ

o d
j

o d
j

=
∈
∑ l

l P

. 

  Set yo d
j
, ,τ = 0 .  GOTO step i. 
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h. STICK with habituated path: 
 
  traverse Po d, ,τ  forward from time, using actual arc costs for day j , departing at ~

, ,to d t
j : 

  ( )′ →T , ~ , ( ), , , ,Po d o d
j jt c tτ τ

)
l

~
, ,po d
j

τ , experienced travel time for the ATIS user. 

  Set pre-trip switch indicator xo d
j
, ,τ = 0 , trip distance

~
, ,

, ,

δ δτ
τ

o d
j

o d
j

=
∈
∑ l

l P

. Set yo d
j
, ,τ = 0 . 

 
 h. Generate performance record (by day j): 
 
  o  trip origin 
  d  trip destination 
  τ  target time of trip end at destination 
  

)po d
j
, ,τ  optimal travel time 

  
)

δ τo d
j
, ,  travel distance on optimal path 

  to d, ,τ
0  habitual time of trip start 

  
)
po d

j
, ,τ  non-user experienced travel time (leaves at habitual trip start time) 

  δ τo d, ,  travel distance on habitual path 

  ~
, ,to d
j

τ  ATIS user time of trip start 

  $
, ,po d τ  predicted  travel time on habitual path at trip start 

  & , ,po d
j

τ  predicted fastest travel time for ATIS user at trip start 

  ~
, ,po d
j

τ  experienced travel time, ATIS user 

  
~

, ,δ τo d
j  experienced travel distance, ATIS user 

  xo d
j
, ,τ  number of pre-trip route changes by ATIS user 

  yo d
j
, ,τ  number of en route path changes by ATIS user 

  ω τo d
j
, ,  savvy ATIS user correction factor  
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OPTION 2  En Route ATIS, No Time Shift (Late Schedule Delay Minimization)  
 
NEW INPUTS: 
 
From Control File: 
 
 e+   Maximum late departure, expressed in multiples of 300 seconds 
 e−   Maximum early departure, expressed in multiples of 300 seconds 
 ε   Route diversion indifference threshold  
 
PROCEDURE: 
 
1. Recover archived and actual link travel time files for the evaluation period ( ) ( )$ , : , .c t c t t jj j

l l

) ∀ . 
 
2. For each o d, ,τ : (Establish Time of Trip Start) 

 a. set ′ = − −t t eo d, ,τ
0 . 

 b.  perform forward DP from ′t  with arc costs fixed at t t= ′ ; 

  ( )( )′ ′ ′ →D , , , $o d t c tj
l  & , ,Po d

j
τ , a candidate fastest path with predicted travel time & , ,po d

j
τ  

 
 c. check to see if trip start can be safely postponed five minutes longer 
  CHECK#1: )ˆ( ,,,,,,

P
τχττ στω do

j
dodo Zpt +∆−<+′ &  (predicted to be early?) 

  CHECK#2: ′ < + +t t eo d, ,τ
0  (still have flexibility to postpone trip?) 

  If CHECK#1 and CHECK#2 are true, 
   then set ′ = ′ +t t ∆  and GOTO step b; 
  Otherwise we have determined the time of trip start, set ~, ,t to d t

j = ′ . 

3. Continue with the o d, ,τ  by establishing en route behavior 

 a.  Initialize intermediate travel time α τ= ~
, ,to d
j , intermediate location i o= , and current 

  path ( )P Pi d o d, , , ,τ τα = .  Define ( )I P , a function which recovers the first link in a path, 

  and ( )B l , a function that recovers the b-node of a link. 

  Set the path taken by the traveler 
~P = ∅ , and set x yo d

j
o d
j

, , , ,τ τ= =0.  

 b. forward traverse the current path, ( )Pi d, ,τ α  , using arc costs fixed at t = α ; 

  ( ) ( )( )′ →T , , $, ,Pi d
jcτ α α αl  ( )pi d

j
, ,τ α , the predicted remaining travel time on the current path. 

 c.  If i o= , set ( )$
, , , ,p pi d
j

i d
j

τ τ α= . 

 d.  perform forward DP from i  at α  with arc costs fixed at t = α ; 

  ( )( )′ →D , , , $i d c jα αl  ( )$
, ,Pi d
j

τ α , the fastest predicted intermediate path 

  and ( )$ , ,po d
j

τ α , the predicted remaining travel time on ( )$
, ,Pi d
j

τ α . 

  If ( )( ) ( )( )I $ I, , , ,P Pi d
j

i dτ τα α= , GOTO Step g. 

 
 e. Check to see that the alternative route saves more time than the indifference threshold 
  If ( ) ( )p pi d

j
i d
j

, , , ,$τ τα α ε− < , GOTO Step g. 
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 f. Switch to the alternative path: 

  Let ( )( )′ =l I $
, ,Pi d
j

τ α   next link to be traversed from alternative path 

  If i o= , then set x xo d
j

o d
j

, , , ,τ τ= +1; increment route switch counter 

   Else set y yo d
j

o d
j

, , , ,τ τ= +1 

  Set ( ) ( )P Pi d i d
j

, , , ,
$

τ τα α= , the alternative path is now the current path 
  GOTO step h. 
  
 g.  Stick with the current path: 

  Let ( )( )′ =l I , ,Pi d τ α   next link to be traversed from current path 

 h. Set 
~ ~P P= + ′l ,   update list of traversed links 

  Set ( )i = ′B l ,   update current position 

  Set ( )α α α= + ′
)
lc j ,  update current time 

  Set ( ) ( )P Pi d i d, , , ,τ τα α=  update path given we have advanced to a new node 

  If i d≠ GOTO b. 

 i. Let ~ ~
, , , ,p to d
j

o d
j

τ τα= − , the experienced travel time on 
~P , and 

~
, , ~

δ δτo d
j =

∈
∑ l
l P

. 

 k. Generate performance record (identical to OPTION 1)  
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A. Forward A-STAR Dynamic Program: ′D  
 

( )( )′D , , ,o d t c t0
l :  The subroutine takes the following arguments: 

o  trip origin   
d  trip destination 
t 0  time of trip start 

( )c tl  set of estimated arc costs to be used, defined ∀ l, t  
 
Plus, it uses the following array already constructed: 
 

( )′H nd  heuristic estimate of minimum time required to go from n to d . 
 
1. Define the following: 
 
 O  the set  of open nodes, set O = o . 
 C  the set of closed nodes, set C = ∅ . 
 ( )F n  estimate of fastest path time from o to d through n , departing n at earliest possible time,

  ( ) ( ) ( )F n G n H nd= + ′  

 ( )G n  earliest possible arrival time at node ( )n G o t, = 0 . 

 ( )S n  set of successor nodes for n , i.e., nodes reached in one arc from n  

 ( )
s

N n  pointer for node n  to previous node along fastest path  
  
2. if O = ∅ , exit with FAILURE. Otherwise, recover or calculate ( )F n n∀ ∈ O . 
 
3. a. find ( ){ }n n

n
= ′

′∈ O
min F ; ( )α = G n . 

 b. if n d= , then GOTO Step 5. 
 c. for each ( )′ ∈n nS : 

  Let ( )l = ′n n, and ( )′ = +α α αcl . 

  if ′ ∉n O CU then 
   Set O O= + ′n , GOTO (*).    
  if ′ ∈n O AND ( )′ < ′α G n then  GOTO (*).    

  if ′ ∈n C AND ( )′ < ′α G n then    
   Set C C= − ′n , O O= + ′n , GOTO (*). 
                            Else GOTO (**). 

             (*) Set ( )G n′ = ′α  and ( )
s
N n n′ = . 

              Update ( ) ( ) ( )F n G n H nd′ = ′ + ′ ′ . 
             (**)  Next ′n . 
 d.  Set C C= + n , O O= − n . 
 
4. GOTO Step 2. 
5. DONE.  Retrace pointers to find optimal path, path travel time is ( )G d t− 0 .  



 

A-13 
 

B. Reverse-Time Dynamic Program: `D  
 

( )( )`D , ,d c tτ l :  The subroutine takes the following arguments: 

d  trip destination 
τ  target time of arrival at d  

( )c tl  set of actual arc costs to be used, defined ∀ l, t  
 
Plus, it uses the following array already constructed: 
 
cl

0  free-flow arc travel times ∀ l  
 
1. Define the following: 
 
 O  the set  of open nodes, set O = d . 
 C  the set of closed nodes, set C = ∅ . 
 ( )G n  latest possible departure time from node n to get to d at time τ , ( )G d = τ . 

 ( )P n  set of predecessor nodes for n , i.e., nodes from which n is reached in one arc 

 ( )
r

N n  pointer for node n  to next node along fastest path  
  
2. if O = ∅  and C contains all nodes in the network, GOTO Step 5. 
 Otherwise, recover or calculate ( )G n n∀ ∈ O . 
 
3. a. find ( ){ }n G n

n
= ′

′∈ O
max ; set ( )α = G n . 

 b. for each ( )′ ∈n P n : 

  Let ( )l = ′n n, and ′′ = − −
−






α α

α
c REM

c
l

l0
0

∆
. 

       (b*)  if ( )′′ + ′′ ≤α α αcl then 

    
( )[ ]

( ) ( )′ = ′′ +
− ′′ − ′′

+ ′′ + − ′′
α α

α α α
α α

c
c c

l

l l

∆
∆ ∆

 

  else set ′′ = ′′ −α α ∆ , GOTO (b*). 
  if ′ ∉n O CU then 
   Set O O= + ′n , GOTO (*).    
  if ′ ∈n O AND ( )′ > ′α G n then  GOTO (*).    

  if ′ ∈n C AND ( )′ > ′α G n then    
   Set C C= − ′n , O O= + ′n , GOTO (*). 
                            Else GOTO (**). 

             (*) Set ( )G n′ = ′α  and ( )
r

N n n′ = . 
             (**)  Next ′n . 
 e.  Set C C= + n , O O= − n . 
 
4. GOTO Step 2. 
5. DONE.  Retrace pointers to find optimal path, latest departure from any node is ( )G n , travel time 

on optimal path from any node is ( )τ − G n .  
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C. Forward Path Traversal Under Estimated Travel Times: ( )( )′T , $L lc t  

( )( )′T , ,,Po d t c t0 0
l :  The subroutine takes the following arguments: 

Po d,  Path to be traversed from origin to destination, an array of  links   

t 0  time of trip start 
cl  set of estimated arc costs fixed at time t 0 , defined ∀ l  
 

Return p co d
o d

,
,

=
∈
∑ l
l P

 , defined as the total path cost from origin to destination. 

 
 

D. Forward Path Traversal Under Actual Travel Times: ( )( )′T ,L
)
lc t  

 

( )( )′T , ,,Po d t c t0
l :  The subroutine takes the following arguments: 

Po d,  Path to be traversed from origin to destination, an array of links   

t 0  time of trip start 
c tl ( )  set of actual arc costs, defined ∀ l, t  
 
1. Set po d, = 0 , defined as the cumulative path cost from origin to destination. 

 Set the intermediate timeα = t 0 . 
2. Find l ∈ Po d, , the next link in sequence from origin to destination. 

 ( ) ( ) ( ) ( ) ( )( )
( )

) ) s s
) r ) s

r sl l

l lc t c t t t
c t c t

t t
= + −

−
−

 (see Appendix E) 

 ( )p p co d o d, ,= + l α  

3. If ( )l ≡ ≠a b b d, ; then set GOTO step 2 with α = +p to d,
0 . 

 Else return po d, as the travel time on the path.  
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E. Evaluating Arc Costs Between Lattice Points 
 

( )c tl

t
s
t

r
t

Linear interpolated value

Most recent estimate value

 
 
1.  For traversals and DP applications using estimated data, let ( ) ( )$c t c tl l

s
= . 

2.  For traversals and DP applications using actual data, ( ))
lc t , use linear interpolation: 

 ( ) ( ) ( ) ( ) ( )( )
( )

) ) s s
) r ) s

r sl l

l lc t c t t t
c t c t

t t
= + −

−
−

. 
 

 


